$\bullet \bullet \bullet$
$\bullet \bullet \bullet$
fx-50FH
User's Guide

- ••••••••••••••••••••••••
$\bullet \bullet \bullet$
$\bullet \bullet \bullet$
$\bullet \bullet \bullet$

http://edu.casio.com

CASIO EDUCATIONAL FORUM

http://edu.casio.com/forum/

CASIO COMPUTER CO., LTD.
6-2, Hon-machi 1-chome
Shibuya-ku, Tokyo 151-8543, Japan

Getting Started

Thank you for purchasing this CASIO product.

Before using the calculator for the first time...

Turn over the calculator and slide it from the hard
case as shown in the illustration. Next, slide the hard case onto the back of the calculator.

【 After you are finished using the calculator...

Remove the hard case from the back of the calculator, and re-install it onto the front.

Resetting the Calculator to Initial Defaults

Perform the operation below when you want to return the calculator's setup to its initial defaults. Note that this procedure will also clear all memory contents (independent memory, variable memory, Answer Memory, statistical calculation sample data, and program data).

SHIFI 9 (CLR) 3 (AII) EXE

Refer to the following for information about the calculation mode and setup and the various
types of memories used by this calculator.

- Calculation Modes and Setup (page 7)

Clearing the Calculation Mode and Setup Settings (page 10)

- Calculator Memory Operations (page 19)
- Statistical Calculations (SD/REG) (page 38)
- Program Mode (PRGM) (page 62)

About this Manual

- Most of the keys perform multiple functions. Pressing SHIFI or ALIPHA and then another key will perform the alternate function of the other key. Alternate functions are marked above the keycap.

Alternate function operations are notated in this manual as shown below. Example: 패N (

The notation in parentheses indicates the function executed by the preceding key operation.

CASIO Europe GmbH Bornbarch 10, 22848 Norderstedt, Germany

- The following shows the notation used in the manual for menu items that appear on the display (which are executed by pressing a number key).
Example: 1 (Contrast)

The no key.

- The cursor key is marked with arrows indicating direction as shown in the illustration nearby. Cursor key operations are notated in this manual as: (C), © , (1) and (©).
- The displays and illustrations (such as key markings) shown in this User's Guide are for illustrative purposes only, and may differ somewhat from the actual items they represent. - The contents of this manual are subject to change without notice.
- In no event shall CASIO Computer Co., Ltd. be liable to anyone for special, collateral, incidental, or consequential damages in connection with or arising out of the purchase or use of this product and items that come with it. Moreover, CASIO Computer Co., Ltd. shall not be liable for any claim of any kind whatsoever by any other party arising out of the us of this product and the items that come with it.

Safety Precautions

Be sure to read the following safety precautions before using this calculator. Keep this manual handy for later reference.

Caution

This symbol is used to indicate information that can result in personal injury or material damage if ignored.

Battery

- After removing the battery from the calculator, put it in a safe place where it will not get into the hands of small children and accidentally swallowed.
- Keep batteries out of the reach of small children. If accidentally swallowed, consult with a physician immediately.
Never charge the battery, try to take the battery apart, or allow the battery to become Impled. Never expose the battery to direct heat or dispose of it by incineration.
creoterly using a battery can cause it to leak and damage nearby items, and can create the risk of fire and personal injury.
- Always make sure that the battery's positive \oplus and negative Θ ends are facing correctly when you load it into the calculator
Use only the type of battery specified for this calculator in this manual.

Disposing of the Calculator

Never dispose of the calculator by burning it. Doing so can cause certain components to suddenly burst, creating the risk of fire and personal injury.

Operating Precautions

- Be sure to press the oo key before using the calculator for the first time
- Even if the calculator is operating normally, replace the battery at least once every
three years.
A dead battery can leak, causing damage to and malfunction of the calculator. Never
leave a dead battery in the calculator.
- The battery that comes with this unit discharges slightly during shipment and storage. Because of this, it may require replacement sooner than the normal expected battery life.
- Low battery power can cause memory contents to become corrupted or lost completely. Always keep written records of all important data.
- Avoid use and storage of the calculator in areas subjected to temperature extremes.

Very low temperatures can cause slow display response, total failure of the display,
window, near a hatery ife. Also avoid leaving the calculator in direct sunlight, near a Heat can cause discoloration or deformation of the calculator's case, and damage to
internal circuitry.

- Avoid use and storage of the calculator in areas subjected to large amounts of humidity and dust.
Take care never to leave the calculator where it might be splashed by water or exposed to large amounts of humidity or dust. Such conditions can damage internal circuitry.
- Never drop the calculator or otherwise subject it to strong impact.
- Never twist or bend the calculator.

Avoid carrying the calculator in the pocket of your trousers or other tight-fitting clothing where it might be subjected to twisting or bending.
Never try to take the calculator apart.

- Never press the keys of the calculator with a ballpoint pen or other pointed object Use a soft, dry cloth to clean the exterior of the calculator.
of water and a mild neutral household detergent. Wring out all excess liquid weak solution the calculator. Never use thinner, benzene or other volatile agents to clean the calculator. Doing so can remove printed markings and can damage the case.

Contents

Coordinate Conversion (Rectangular \leftrightarrow Polar) ... 29
Other Functions..
ENG Calculation Examples ... 33
Complex Number Calculations (CMPLX) .. 34
Inputting Complex Numbers... 34
Complex Number Calculation Result Display... 34
Calculation Result Display Examples .. 35
Conjugate Complex Number (Conjg) ... 36

Statistical Calculations (SD/REG) .. 38
tatistical Calculation Sample Data ... 38
Performing Single-variable Statistical Calculations .. 38

竍
Performing Base-n Cas (BASE).. 52

Using the LOGIC Menu ...
Specifying a Number Base for a Particular Value.. 54
Performing Calculations Using Logical Operations and Negative Binary Values ..
Built-in Formulas ... 56
Using Built-in Formulas .. 56
Built-in Formula List.....
Program Mode (PRGM) .. 62
Program Mode Overview.. 62
Creating a Program .. 63
Running a Program.
Deleting a Program..
Inputting Commands..

Cacuation Priorty Sequence ... 71
tack Limitations .. 72
Calculation Ranges, Number of Digits, and Precision.
Error Messages ...
$\begin{array}{r}.772 \\ . . . \\ \hline\end{array}$

Power Requirements ... 76
Specifications .. 77

Before starting a calculation．．．

－Turning On the Calculator
Press ©N．The calculator will enter the calculation mode（page 7）that it was in the last time you turned it off．

【】 Adjusting Display Contrast

If the figures on the display become hard to read，try adjusting display contrast．
1．Press shmfl 100 E（SETUP）© 9 （Contrast）．

．This will display the contrast adjustment screen
2．Use © and © to adjust display contrast．
3．After the setting is the way you want，press $\triangle A C$ or shlfr Prog（EXIT）．
Note
You can also use \square and \square to adjust contrast while the calculation mode menu that appears when you press the 100 E key is on the display．
Important！
If adjusting display contrast does not improve display readability，it probably means that battery power is low．Replace the battery．
K Turning Off the Calculator
Press shnf \triangle AC（OFF）．
The following information is retained when you turn off the calculator．
－Calculation modes and setup（page 7）
－Answer Memory（page 19），independent memory（page 21），and variable memory（page 22）contents
■ Key Markings

	Function	Colors	To perform the function
（1）	M +		Press the key．
（2）	M－	Text：Amber	Press ssniry and then press the key．
（3）	M	Text：Red	Press
（4）	DT	Text：Blue	In the SD or REG Mode，press the key．
（5）	CL	Text：Amber Frame：Blue	In the SD or REG Mode，press sshrf and then press the key．
（6）	\angle	Text：Amber Frame：Purple	In the CMPLX Mode，press shrfir）and then press the key．

E－6

2．Perform one of the following operations to select the calculation mode you want

To select this calculation mode：	Press this key：
COMP（Computation）	$\mathbf{1}$（COMP）
CMPLX（Complex Number）	$\mathbf{2}$（CMPLX）
BASE（Base $n)$	$\boxed{3}$（BASE）
SD（Single Variable Statistics）	4 （SD）
REG（Paired Variable Statistics）	$\mathbf{5}$（REG）
PRGM（Program）	$\mathbf{6}$（PRGM）

－Pressing a number key from 11 to 6 selects the applicable mode，regardless of which menu screen is currently displayed．

\square Calculator Setup

The calculator setup can be used to configure input and output settings，calculation parameters，and other settings．The setup can be configured using setup screens，which
 （4）and $(\mathbb{)}$ to navigate between them．

【】 Specifying the Angle Unit

You can specify degrees，radians，or grads as the angle unit to be applied for trigonometric function calculations．
$\left(90^{\circ}=\frac{\pi}{2}\right.$ radians $=100$ grads $)$

Angle Unit	Perform this key operation：
Degrees	
Radians	Sshlf） 11006 ］（Rad）
Grads	（shrf）1000e 3 （Gra）

\】Specifying the Display Digits

You can select any one of three settings for the calculation result display digits：fixed number of decimal places（ 0 to 9 places），fixed number of significant digits（ 1 to 10 digits）， or exponential display range（a choice of two settings）．

Exponential Display	Perform this key operation：
Number of Decimal Places	
Significant Digits	
Exponential Display Range	

	Function	Colors	To perform the function
（7）	A	Text：Red Frame：Green	Press a alpM and then press the key（variable A）． In the BASE Mode，press the key．
8	LOGIC	Text：Green	In the BASE Mode，press the key．

Reading the Display

K Input Expressions and Calculation Results
This calculator can display both the expressions you input and calculation results on the same screen．

【 Display Symbols

The symbols described below appear on the display of the calculator to indicate the current calculation mode，the calculator setup，the progress of calculations，and more．In this manual，the expression＂turn on＂is used to mean that a symbol appears on the display，and ＂turn off＂means that it disappears．

The nearby sample screen shows the D symbol．	$\sin (30)$	0
		05

The 】 symbol turns on when degrees（Deg）are selected for the default angle unit（page B）．For information about the meaning of each symbol，see the section of this manual tha describes each function．

Calculation Modes and Setup

Selecting a Calculation Mode

Your calculator has six＂calculation modes＂．
【】 Selecting a Calculation Mode
1．Press 1000 ．
－The calculation mode menu has two screens．Press 1000 to toggle between them．You can also switch between menu screens using（a）and（1）．

E－7

The following explains how calculation results are displayed in accordance with the setting you specify．
－From zero to nine decimal places are displayed in accordance with the number of decimal places（Fix）you specify．Calculation results are rounded off to the specified number of digits．
Example： $100 \div 7=14.286$（ $\mathrm{Fix}=3$ ）
－After you specify the number of significant digits with Sci ，calculation results are
displayed using the specified number of significant digits and 10 to the applicable power． Calculation results are rounded off to the specified number of digits．
alculation results are rounded off to the
Example： $1 \div 7=1.4286 \times 10^{-1} \quad(\mathrm{Sci}=5)$
－Selecting Norm1 or Norm2 causes the display to switch to exponential notation whenever the result is within the ranges defined below．
Norm1： $10^{-2}>|x|,|x| \geqq 10^{10}$
Norm2： $10^{-9}>|x|,|x| \geqq 10^{10}$
Example： $\begin{aligned} 100 \div 7 & =14.28571429 \quad \text {（Norm1 or Norm2）} \\ 1 \div 200=5 . \times 10^{-3} & \text {（Norm1）}\end{aligned}$

$$
\begin{aligned}
1 \div 200= & 5 . \times 10^{-3} & & \text { (Norm1) } \\
& 0.005 & & \text { (Norm2) }
\end{aligned}
$$

【．Specifying the Fraction Display Format
You can specify either improper fraction or mixed fraction format for display of calculation results．

Fraction Format	Perform this key operation：
Mixed Fractions	
Improper Fractions	

You can specify either rectangular coordinate format or polar coordinate format for complex You can specify either recta
number calculation results．

Complex Number Format	Perform this key operation：
Rectangular Coordinates	［shlfi M100e（®）（®）（1）$(a+b i)$
Polar Coordinates	

Specifying the Statistical Frequency Setting

Use the key operations below to turn statistical frequency on or off during SD Mode and

Frequency Setting	Perform this key operation：
Frequency On	（shriry woob（1）（1） 1 （FreqOn）
Frequency Off	（SHHFIT100E（1）（1） 2 （FreqOff）

Clearing the Calculation Mode and Setup Settings

Perform the procedure described below to clear the current calculation mode and all setup
settings and initialize the calculator to the following．
Calculation Mode

Angle Unit．
OMP（Computation Mode）
Exponential Display．
Norm1
Fraction Format
Complex Number Form
Frequency Setting
．ab／c（Mixed Fractions）

If you do not want to clear the calculator＇s settings，press $\triangle A C$ in place of 困 in the above operation．

Inputting Calculation Expressions

 and Values
Inputting a Calculation Expression（Natural Input）

The natural input system of your calculator lets you input a calculation expression just as it is written and execute it by pressing 这E．The calculator determines the proper priority sequence for addition，subtraction，multiplication，division，functions and parentheses automatically．
Example： $2 \times(5+4)-2 \times(-3)=$
\} \ Inputting Scientific Functions with Parentheses（sin，cos， \sqrt { } ， etc．）
Your calculator supports input of the scientific functions with parentheses shown below．
Note that after you input the argument，you need to press \square to close the parentheses．
$\sin \left(, \cos \left(, \tan \left(, \sin ^{-1}\left(, \cos ^{-1}\left(, \tan ^{-1}\left(, \sinh \left(, \cosh \left(, \tanh \left(, \sinh ^{-1}\left(, \cosh ^{-1}\left(, \tanh ^{-1}\right), \log (, \ln (\right.\right.\right.\right.\right.\right.\right.\right.\right.\right.$, $e^{\wedge}\left(, 10^{\wedge}(, \sqrt{ }(, \sqrt[3]{ }\right.$（，Abs（，Pol（，Rec（，argl，Conjg（，Not（，Neg（，Rnd
Example： $\sin 30=$
（sin 3 回国国 $\sin (30)$
$\sin (30)$ 0.5

$\boldsymbol{\lambda}$ Omitting the Multiplication Sign

You can omit the multiplication sign in the following case
－Immediately before an open parenthesis： $2 \times(5+4)$
Immediately before a scientific function with parentheses： $2 \underline{x} \sin (30), 2 \underline{x} \sqrt{ }$（3）
Before a prefix symbol（excluding the minus sign）： $2 \underline{x} h 123$
T Final Closed Parenthesis
You can omit one or more closed parentheses that come at the end of a calculation， immediately before the 昆双 key is pressed．
Example：$(2+3) \times(4-1)=15$

	$(2+3) \times(4-1$
田回國	15

－Simply press 国琏 without closing the parentheses．The above applies to the closing
－Simply press Exal without closing the parentheses．The above applies to the closing result if you forget the closing parentheses that are required before the end

Scrolling the Screen Left and Right

inputting a mathematical expression that has more than 16 characters in it will cause the screen to scroll automatically，causing part of the expression to move off of the display．The ＂$<$＂symbol on the left edge of the screen indicates that there is additional data off the left side of the display．

－While the symbol is on the screen，you can use the © key to move the cursor to the left and scroll the screen
－Scrolling to the left causes part of the expression to run off the right side of the display， which is indicated by the \Rightarrow symbol on the right．While the \Rightarrow symbol is on the screen，
you can use the Θ key to move the cursor to the right and scroll the screen．

- You can also press © (4) to jump to the beginning of the expression，or \odot to jump to the end．

\ Number of Input Characters（Bytes）

As you input a mathematical expression，it is stored in memory called an＂input area，＂ which has a capacity of 99 bytes．This means you can input up to 99 bytes for a single mathematical expression．
Normally，the cursor that indicates the current input location on the display is either a flashing vertical bar（ \mathbf{I} ）or horizontal bar（ $\mathbf{\square}$ ）．When the remaining capacity of the input area 10 byles or less，the oursor changes to a llashing box（（ ）
happens，stop input of the current expression at some suitable location and calculate is result．

E－11

$$
\begin{aligned}
& \text { (4)(4) } 369 \times \underline{x} 12 \\
& \text { 凩 } 369 \times \underline{12}
\end{aligned}
$$

K Editing a Key Operation within an Expression
With the insert mode，use（ब）and（1）to move the cursor to the right of the key operation you want to edit，pross men the and then perform the correct key operation．With
 the correct key operation．
Example：To correct $\cos (60)$ so it becomes $\sin (60)$
Insert Mode

cos 6000	$\cos (60) 1$
（1）（1）（4）凩	160）
sin	sin（160）
cos 600	$\cos (60)$
（1）（1）（4）（1）	$\underline{\cos }(60)$
sin	$\sin (\underline{60})$

Z Inserting Key Operations into an Expression
Be sure to select the insert mode whenever you want to insert key operations into an expression．Use © and © to move the cursor to the location where you want to insert the key operations，and then perform them．

Finding the Location of an Error

If your calculation expression is incorrect，an error message will appear on the display when
 you press Exe to execute it．After an error message appears，press the or key correct it．
Example：When you input $14 \div 0 \times 2=$ instead of $14 \div 10 \times 2$
（The following examples use the insert mode．）
（1）4 Math ERROR
（1）or（4） $14 \div 01 \times 2$

E－13

Instead of pressing © or © while an error message is displayed to find the location of the error，you could also press $\triangle \triangle$ to clear the calculation．

｜｜Basic Calculations

Unless otherwise noted，the calculations in this section can be performed in any of the calculator＇s calculation mode，except for the BASE Mode．

Arithmetic Calculations

Arithmetic calculations can be used to perform addition（ \boxplus ），subtraction（ \square ）， multiplication（ $\boldsymbol{\otimes}$ ），and division（ $\mathbf{母}_{\mathbf{~}}$ ）

Example 1： $2.5+1-2=1.5$		$2.5+1-2$

－The calculator determines the proper priority sequence for addition，subtraction， multiplication，and division automatically．See＂Calculation Priority Sequence＂on page 71 for more information．

Fractions

	Key Operation	Display
Improper Fraction	7 $\square_{\text {包 } 3}$	
Mixed Fraction		

Note
－Under initial default settings，fractions are displayed as mixed fractions．
Fraction calculation results are always reduced automatically before being displayed Executing 2 ـ 4 for example，will display the result 1 ـ 2 ．
－ $\boldsymbol{\lambda}$ Fraction Calculation Examples
Example 1： $3 \frac{1}{4}+1 \frac{2}{3}=4 \frac{11}{12}$

Example 2： $4-3 \frac{1}{2}=\frac{1}{2}$	
	1」2
Example 3：$\frac{2}{3}+\frac{1}{2}=\frac{7}{6}$（Fraction Display Format： d / c ）	
	7」6

Note
－If the total number of elements（integer＋numerator＋denominator＋separator symbols）
of a fraction calculation result is greater than 10，the result will be displayed in decimal
－format．
－If an input calculation includes a mixture of fraction and decimal values，the result will be
displayed in decimal format
y for the elements of a fraction．Inputting non－integers will produce a decimal format result．
【 Switching between Mixed Fraction and Improper Fraction Format
To convert a mixed fraction to an improper fraction（or an improper fraction to a mixed fraction），press shrfor α（ d / c ）．
【．Switching between Decimal and Fraction Format
Use the procedure below to toggle a displayed calculation result between decimal and fraction format．
Example： $1.5=1 \frac{1}{2}, 1 \frac{1}{2}=1.5$

Note
The calculator cannot switch from decimal to fraction format if the total number of fraction
elements（integer＋numerator＋denominator＋separator symbols）is greater than 10

E－15

Percent Calculations

Inputting a value and with a percent（\％）sign makes the value a percent．The percent（\％） sign uses the value immediately before it as the argument，which is simply divided by 100 to get the percentage value．
【】 Percent Calculation Examples

Example 1： $2 \%=0.02$（ $\frac{2}{100}$ ）	2\％	0.02
Example 2： $150 \times 20 \%=30 \quad\left(150 \times \frac{20}{100}\right)$		
	150×20\％	30.
Example 3：What percent of 880 is 660 ？		
	660 -880%	75.

Example 4：Increase 2,500 by 15% ．

$$
\begin{aligned}
& \text { 2㺃回国回回区 } 2500+2500 \times 15 \%
\end{aligned}
$$

Example 5：Reduce 3，500 by 25\％．

Example 6：Reduce the sum of 168,98 ，and 734 by 20% ．

Example 7：If 300 grams are added to a test sample originally weighing 500 grams，what is the percentage increase in weight？

\qquad

Example 8：What is the percentage change when a value is increased from 40 to 46 ？How about to 48 ？
Insert Mode

Degree，Minute，Second（Sexagesimal）Calculations You can perform calculations using sexagesimal values，and you can convert between sexagesimal and decimal．

【 Inputting Sexagesimal Values

The following is basic syntax for inputting a sexagesimal value．
$\{$ Degrees $\}$ ，${ }^{2}$ Minutes ${ }^{0}$ \｛Seconds\} ${ }^{0}$
Example：To input $2^{\circ} 30^{\prime} 30^{\prime \prime}$

$2^{\circ} 30^{\circ} 30^{\circ}$
$2^{\circ} 30^{\circ} 30$
－Note that you must always input something for the degrees and minutes，even if they are zero．
Example：To input $0^{\circ} 00^{\prime} 30^{\prime \prime}$ ，press 0 国 0 四 3 四．

K Sexagesimal Calculation Examples

The following types of sexagesimal calculations will produce sexagesimal results．
－Addition or subtraction of two sexagesimal values
－Multiplication or division of a sexagesimal value and a decimal value
Example 1： $2^{\circ} 20^{\prime} 30^{\prime \prime}+39^{\prime} 30^{\prime \prime}=3^{\circ} 00^{\prime} 00$

Example 2． $2^{\circ} 20^{\prime} 00^{\prime \prime} \times 3.5=8^{\circ} 10^{\prime} 00^{\prime \prime}$

C Converting between Sexagesimal and Decima
Pressing ${ }^{2}$ ）while a calculation result is displayed will toggle the value between sexagesimal and decimal．

	2255
\bigcirc	$2^{\circ} 15^{\circ} 18$.
\bigcirc	2255

Calculation History and Replay

Calculation history maintains a record of each calculation you perform，including the
expressions you input and calculation results．You can use calculation history in the COMP，
CMPLX，and BASE Modes．

Accessing Calculation History

The $\boldsymbol{\Delta}$ symbol in the upper right corner of the display indicates that there is data stored in culation history．To view the data in calculation history，press（4）．Each press of（ब）will roll upwards（back）one calculation，displaying both the calculation expression and its result．

Example：

While scrolling through calculation history records，the $\boldsymbol{\nabla}$ symbol will appear on the display hich indicates that there are records below（newer than）the current one．When this symbol is turned on，press \odot to scroll downwards（forward）through calculation history ecords
Important！
－Calculation history records are all cleared whenever you press © ，when you change to a different calculation mode，and whenever you perform any reset operation
Calculation history capacity is limited．Whenever you perform a new calculation while calculation history is full，the oldest record in calculation history is deleted automatically to make room for the new one．

E－18

【 $\$ Ans Update and Delete Timing

When using Ans in a calculation，it is important to keep in mind how and when its contents change．Note the following points．
－The contents of Ans are replaced whenever you perform any of the following operations： calculate a calculation result，add a value to or subtract a value from independent memory，assign a value to a variable or recall the value of a variable，or input statistica data in the SD Mode or REG Mode．
In the case of a calculation that produces more than one result（like coordinate
calculations），the value that appears first on the display is stored in Ans．
Wheontents of Ans do not change if the current calculation produces an error．
and the imaginary part of the result are stored in Ans．Note，however，that the imaginary part of the value is cleared if you change to another calculation mode．
【 $\$ Automatic Insertion of Ans in Consecutive Calculations
If you start a new calculation while the result of a previous calculation is still on the display，
the calculator will insert Ans into the applicable location of the new calculation automatically． Example 1：To divide the result of 3×4 by 30

Example 2：To determine the square root of the result of $3^{2}+4^{2}$

Note
－As in the above examples，the calculator automatically inserts Ans as the argument of
any calculation operator or scientific function you input while a calculation result is on the display．
－In the case of a function with parenthetical argument（page 10），Ans automatically becomes the argument only in the case that you input the function alone and then press狪：
Basically，Ans is inserted automatically only when the result of the previous calculation is still on the display，immediately after you executed the calculation that produced it．See the next section for information about inserting Ans into a calculation manually with the ans key

Using Replay

While a calculation history record is on the display，press $(\underset{)}{ }$ or display the cursor and enter the editing mode．Pressing（－）displays the cursor at the beginning of the calculation expression，while © displays it at the end．After you make the changes you want，press 逐相 to execute the calculation
Example： $\begin{aligned} & 4 \times 3+2.5=14.5 \\ & 4 \times 3-7.1=4.9\end{aligned}$

Galculator Memory Operations

Your calculator includes the types of memory described below，which you can use for storage and recall of values．

Memory Name	Description
Answer Memory	Answer Memory contains the result of the last calculation you performed．
Independent Memory	Independent memory can be used in all calculation modes，except for the SD Mode and the REG Mode．
Variables	Six variables named A，B，C，D，X, and Y can be used for temporary storage of values．Variables can be used in all calculation modes．

oo another mode，or turn off the calculato
Using Answer Memory（Ans）
The result of any new calculation you perform on the calculator is stored automatically in Answer Memory（Ans）．

E－19

I Inserting Ans into a Calculation Manually

You can insert Ans into a calculation at the current cursor location by pressing the anns key． Example 1：To use the result of $123+456$ in another calculation as shown below $123+456=\frac{579}{L} \quad 789-\frac{579}{\uparrow}=210$
 \qquad

78 可 1 Ans Ex

789－Ans	
	210.

Example 2：To determine the square root of $3^{2}+4^{2}$ ，and then add 5 to the result

Using Independent Memory

Independent memory (M) is used mainly for calculating cumulative totals．
If you can see the M symbol on the display，it means there is a non－zero value in independent memory．

$$
\text { M symbol }-1^{\mathrm{m}} \mathrm{M}_{\mathrm{M}+} \mathrm{l} .
$$

【 Adding to Independent Memory

While a value you input or the result of a calculation is on the display，press（M＋to add it to independent memory（M）．
Example：To add the result of $105 \div 3$ to independent memory（ M ）
\Subtracting from Independent Memory
While a value you input or the result of a calculation is on the display，press sunf 四（ $M-$ ）to subtract it from independent memory（M）．
Example：To subtract the result of 3×2 from independent memory（M）

Note

subtract it from independent memory．
Important！
 calculation in place of ㅈxe is the result of the calculation（which is added to or subtracted from independent memory）．It is not the current contents of independent memory．
K Viewing Independent Memory Contents
Press ㄸcㅣ（M＋1（M）．
【．Clearing Independent Memory Contents（to 0）
0 （sintr ral（STO）MAH（M）
Clearing independent memory will cause the M symbol to turn off．
【】Calculation Example Using Independent Memory
If the M symbol is displayed on your calculator screen，press 0 （sunf（ clear independent memory contents before performing the following operation

Example：

$$
23+9=32
$$

$53-6=47$
5 3 困 6 叫
－） $45 \times 2=90$
 9 回

$$
\begin{array}{r}
99 \div 3=33 \\
\hline \text { (Total) } 22
\end{array}
$$

$$
\text { (Recalls value of } \mathrm{M} \text {.) }
$$

Using Variables

The calculator supports six variables named A, B, C, D, X ，and Y ，which you can use to store values as required
【 Assigning a Value or Calculation Result to a Variable
Use the procedure shown below to assign a value or a calculation expression to a variable．
Example：To assign $3+5$ to variable A

【 Viewing the Value Assigned to a Variable

Example：To view the value assigned to variable A （1）$(-)$（A）
【 Using a Variable in a Calculation
You can use variables in calculations the same way you use values．
Example：To calculate $5+\mathrm{A}$

$$
\mathrm{E}-22
$$

Scientific Constants

Your calculator has 40 often－used scientific constants built in．Like π and e ，each scientific constant has a unique display symbol．Scientific constants are supported in all modes， except for the BASE Mode．
【 I Inputting a Scientific Constant
1．Press（shnfir） 7 （CONST）．
－This displays page 1 of the scientific constant menu．

－There are 10 scientific command menu screens，and you can use $(\mathbb{)}$ and $(\mathbb{1}$ to navigate between them．For more information，see＂Table of Scientific Constants＂on page 25.
2．Use（1）and（4）to scroll through the pages and display the one that contains the scientific constant you want
3．Press the number key（from $\mathbf{1}^{\text {to }}$（4）that corresponds to the scientific constant you ant to select
This will input the scientific constant symbol that corresponds to the number key you press．

$$
\begin{array}{|cccc}
\hline \mathrm{mp} & \mathrm{mn} & \mathrm{me} & \mathrm{~m}_{\mu} \rightarrow \\
1 & 2 & 3 & 4
\end{array} \Rightarrow \begin{array}{ll}
\mathrm{mpl} \\
& 0 \\
\hline
\end{array}
$$

－Pressing Exe here will display the value of the scientific constant whose symbol is currently on the screen．

${ }^{1.672621717^{2}}$

【 Example Calculations Using Scientific Constants
Example 1：To input the constant for the speed of light in a vacuum

Example 2：To calculate the speed of light in a vacuum（ $c_{0}=1 / \sqrt{\varepsilon_{0} \mu_{0}}$ ）

$$
\cos ^{1 \div \sqrt{ } \|} \quad 0 .
$$

\．Clearing the Value Assigned to a Variable（to 0）
Example：To clear variable
00 （SHIFI 园）（STO）（ -1 （A）
【】Calculation Example Using Variables
Example：To perform calculations that assign results to variables B and C ，and then use the variables to perform another calculation
$\frac{9 \times 6+3}{5 \times 8}=1.425$

（96 6 － 3	$9 \times 6+3 \rightarrow B$	57.
	$5 \times 8 \rightarrow C$	40.
	$B \div C$	

Clearing All Memory Contents
Perform the following key operation when you want to clear the contents of independent memory，variable memory，and Answer Memory

－If you do not want to clear the calculator＇s settings，press \triangle AC in place of Exe in the above operation．

Using π, e ，and Scientific

Constants

－Pi (π) and Natural Logarithm Base e
The calculator supports input of pi (π) and natural logarithm base e into calculations．π and e are supported in all modes，except for the BASE Mode．The following are the values that he calculator applies for each of the built－in constants．
$\pi=3.14159265358980$（태TT K ExP $(\pi))$

E－23

V Table of Scientific Constants
The numbers in the＂No．＂column show the scientific constant menu page number on the left and the number key you need to press to select the constant when the proper menu page is displayed．

No．	Scientific Constant	Symbol	Value	Unit
1－1	Proton mass	m_{p}	$1.67262171 \times 10^{-27}$	kg
1－2	Neutron mass	m_{n}	$1.67492728 \times 10^{-27}$	kg
1－3	Electron mass	m_{e}	$9.1093826 \times 10^{-31}$	kg
1－4	Muon mass	m_{μ}	$1.8835314 \times 10^{-28}$	kg
2－1	Bohr radius	a_{0}	$0.5291772108 \times 10^{-10}$	m
2－2	Planck constant	h	$6.6260693 \times 10^{-34}$	J s
2－3	Nuclear magneton	$\mu_{\text {N }}$	$5.05078343 \times 10^{-27}$	JT^{-1}
2－4	Bohr magneton	$\mu_{\text {B }}$	$927.400949 \times 10^{-26}$	JT^{-1}
3－1	Planck constant，rationalized	そ	$1.05457168 \times 10^{-34}$	Js
3－2	Fine－structure constant	α	$7.297352568 \times 10^{-3}$	－
3－3	Classical electron radius	re_{e}	$2.817940325 \times 10^{-15}$	m
3－4	Compton wavelength	λ_{c}	$2.426310238 \times 10^{-12}$	m
4－1	Proton gyromagnetic ratio	γ_{p}	2.67522205×10^{8}	$\mathrm{s}^{-1} \mathrm{~T}^{-1}$
4－2	Proton Compton wavelength	$\lambda_{\text {cp }}$	$1.3214098555 \times 10^{-15}$	m
4－3	Neutron Compton wavelength	$\lambda_{\text {cn }}$	$1.3195909067 \times 10^{-15}$	m
4－4	Rydberg constant	R ∞	10973731.568525	m^{-1}
5－1	Atomic mass constant	u	$1.66053886 \times 10^{-27}$	kg
5－2	Proton magnetic moment	μ_{p}	$1.41060671 \times 10^{-26}$	JT^{-1}
5－3	Electron magnetic moment	$\mu_{\text {e }}$	$-928.476412 \times 10^{-26}$	JT^{-1}
5－4	Neutron magnetic moment	μ_{n}	$-0.96623645 \times 10^{-26}$	JT^{-1}
6－1	Muon magnetic moment	μ_{μ}	$-4.49044799 \times 10^{-26}$	JT^{-1}
6－2	Faraday constant	F	96485.3383	$\mathrm{C} \mathrm{mol}^{-1}$
6－3	Elementary charge	e	$1.60217653 \times 10^{-19}$	C

No．	Scientific Constant	Symbol	Value	Unit
6－4	Avogadro constant	$\mathrm{N}_{\text {A }}$	6.0221415×10^{23}	mol^{-1}
7－1	Boltzmann constant	k	$1.3806505 \times 10^{-23}$	JK^{-1}
7－2	Molar volume of ideal gas	V_{m}	22.413996×10^{-3}	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$
7－3	Molar gas constant	R	8.314472	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
7－4	Speed of light in vacuum	C_{0}	299792458	$\mathrm{m} \mathrm{s}^{-1}$
8－1	First radiation constant	C_{1}	$3.74177138 \times 10^{-16}$	W m ${ }^{2}$
8－2	Second radiation constant	C_{2}	1.4387752×10^{-2}	m K
8－3	Stefan－Boltzmann constant	σ	5.670400×10^{-8}	$\mathrm{Wm}^{-2} \mathrm{~K}^{-4}$
8－4	Electric constant	ε_{0}	$8.854187817 \times 10^{-12}$	Fm^{-1}
9－1	Magnetic constant	μ_{0}	$12.566370614 \times 10^{-7}$	Na^{-2}
9－2	Magnetic flux quantum	¢о	$2.06783372 \times 10^{-15}$	Wb
9－3	Standard acceleration of gravity	g	9.80665	$\mathrm{m} \mathrm{s}^{-2}$
9－4	Conductance quantum	G_{0}	$7.748091733 \times 10^{-5}$	S
10－1	Characteristic impedance of vacuum	Z_{0}	376.730313461	Ω
10－2	Celsius temperature	t	273.15	K
10－3	Newtonian constant of gravitation	G	6.6742×10^{-11}	$\mathrm{m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-2}$
10－4	Standard atmosphere	atm	101325	Pa

Scientific Function Calculations

Unless otherwise noted，the functions in this section can be used in any of the calculator＇s calculation modes，except for the BASE Mode．

Scientific Function Calculation Precautions

－When performing a calculation that includes a built－in scientific function，it may take some time before the calculation result appears．Do not perform any key operation on the calculator until the calculation result appears．
－To interrupt and on－going calculation operation，press AC．
Interpreting Scientific Function Syntax
－Text that represents a function＇s argument is enclosed in braces（\｛ \}). Arguments are normally \｛value\} or \{expression\}.
When braces（ $\}$ ）are enclosed within parentheses，it means that input of everything inside the parentheses is mandatory．

Trigonometric and Inverse Trigonometric Functions
$\sin \left(, \cos \left(, \tan \left(, \sin ^{-1}\left(, \cos ^{-1}\left(, \tan ^{-1}(\right.\right.\right.\right.\right.$

\】 Syntax and Input

$\sin (\{n\}), \cos (\{n\}), \tan (\{n\}), \sin ^{-1}(\{n\}), \cos ^{-1}(\{n\}), \tan ^{-1}(\{n\})$
Example： $\sin 30=0.5, \sin ^{-1} 0.5=30$（Angle Unit：Deg）

	$\sin (30)$	$\begin{aligned} & 0 \\ & 0.5 \end{aligned}$
	$\sin ^{-1}(0.5)$	® 30.

λ Notes
－These functions can be used in the CMPLX Mode，as long as a complex number is not used in the argument．A calculation like $i \times \sin (30)$ is supported for example，but $\sin (1+\boldsymbol{i})$
－The angle unit you need to use in a calculation is the one that is currently selected as the default angle unit．

Angle Unit Conversion

You can convert a value that was input using one angle unit to another angle unit． After you input a value，press shrfi anss（ DRG ）to display the menu screen shown below．
$\begin{array}{lll}D & R & G \\ 1 & 2 & 3\end{array}$
（1）（D）：Degrees
2（R）：Radian

Example：To convert $\frac{\pi}{2}$ radians and 50 grads both to degrees
The following procedure assumes that Deg（degrees）is currently specified for the default angle unit．

01 Shtro ExP（ π ）	$(\pi \div 2)^{r}$	
		90.
550 （shlir Anse（DRG）	50^{9}	0
［3（G）ExE		45

E－27

Hyperbolic and Inverse Hyperbolic Functions

Power Functions and Power Root Functions

Syntax and Input

	（Square） （Cube） （Reciprocal） （Power） （Square Root） （Cube Root） （Power Root）	
Example 1：$(\sqrt{2}+1)(\sqrt{2}-1)=1,(1+1)^{2+2}=16$		
	回回思田回四	$\begin{array}{r} (\sqrt{ }(2)+1)(\sqrt{ }(2)-1) \\ 1 \end{array}$
■⿴囗十		$\begin{equation*} (1+1)^{\wedge}(2+2) \tag{16} \end{equation*}$
Example 2：$-2^{\frac{2}{3}}=-1.587401052$		$\begin{aligned} & -2^{\wedge}(2,3) \\ & -1.587401052 \end{aligned}$

Z Notes

－The functions x^{2}, x^{3} ，and x^{-1} can be used in complex number calculations in the CMPLX
Mode．Complex number arguments are also supported for these functions．
Mode．Complex number arguments are also supported for these functions．
$\bullet \wedge(, \sqrt{\sqrt[3]{ }}(\sqrt[x]{ }$（are also supported in the CMPLX Mode，but complex number
$-\wedge, \sqrt{ },, \sqrt[3]{ }(, \sqrt[x]{ }$（are also supported in the CMP
arguments are not supported for these functions．
Coordinate Conversion（Rectangular \leftrightarrow Polar）

$\operatorname{Pol}(, \operatorname{Rec}($
Your calculator can convert between rectangular coordinates and polar coordinates

E－29

C．Syntax and Input

Rectangular－to－Polar Coordinate Conversion（Pol）

```
Pol(x,y)
x: Rectangular coordinate }x\mathrm{ -valu
y: Rectangular coordinate y-value
```

Polar－to－Rectangular Coordinate Conversion（Rec）
$\operatorname{Rec}(r, \theta)$
coordinate r－value
θ ：Polar coordinate θ－value
Example 1：To convert the rectangular coordinates $(\sqrt{2}, \sqrt{2})$ to polar coordinates （Angle Unit：Deg）
（View the value of θ ）

	$\begin{array}{r} \text { Poll(} \sqrt{ }(2), \sqrt{ }(2)) \\ 2 \end{array}$
	0
（RCC）${ }^{(1)}$	Y
	45.

Example 2：To convert the polar coordinates $\left(2,30^{\circ}\right)$ to rectangular coordinates （Angle Unit：Deg）

View the value of y ）

	$\operatorname{Rec}(2,30)$ 1.732050808
（100） O $^{(Y)}$	$Y \quad 0$

\】 Notes

These functions can be used in the COMP，SD，and REG Modes
Calculation results show the first r value or x value only．
－The r－value（or x－value）produced by the calculation is assigned to variable X ，while the θ－value（or y－value）is assigned to variable Y（page 22）．To view the θ－value（or y－value）， display the value assigned to variable Y ，as shown in the example．
－The values obtained for θ when converting from rectangular coordinates to pola －The values obtained for θ when converting from
－When executing a coordinate conversion function inside of a calculation expression，the calculation is performed using the first value produced by the conversion（ r－value or x value）．
Example：Pol $(\sqrt{2}, \sqrt{2})+5=2+5=7$

－30

Other Functions

$x!$ ，Abs（，Ran\＃，$n \mathrm{Pr}, n \mathrm{Cr}$, Rnd（

The $x!, n \mathrm{P} r$ ，and $n \mathrm{C} r$ functions can be used in the CMPLX Mode，but complex number arguments are not supported．
【 Factorial（！）
Syntax：$\{n\}$ ！（ $\{n\}$ must be a natural number or 0 ．）
Example：$(5+3)$ ！

【】 Absolute Value（Abs）

When you are performing a real number calculation，Abs（ simply obtains the absolute value． This function can be used in the CMPL X Mode to determine the absolute value（size）of a complex number．See＂Complex Number Calculations＂on page 34 for more information．

Syntax：Abs $\{\{n\})$

Example：Abs $(2-7)=5$

Random Number（Ran\＃）
This function generates a three－decimal place（ 0.000 to 0.999 ）pseudo random number．It
does not require an argument，and can be used the same way as a variable．
Syntax：Ran\＃
Example：To use 1000Ran\＃to obtain three 3 －digit random numbers．

	1000Ran\＃	
		287.
	1000Ran\＃	
ExE		613
	1000Ran\＃	
誆		118

－The above values are provided for example only．The actual values produced by your calculator for this function will be different．

E－31

【】 Permutation（ $n \mathrm{Pr}$ ）／Combination（ $n \mathbf{C r}$ ）

Syntax：$\{n\} \mathrm{P}\{m\},\{n\} \subset\{m\}$
Example：How many four－person permutations and combinations are possible for a grou of 10 people？

（1）	10P4	
		5040.
	1004	10

K Rounding Function（Rnd）

You can use the rounding function（Rnd）to round the value，expression，or calculation result specified by the argument．Rounding is performed to the number of significant digits in accordance with the number of display digits setting
Rounding for Norm1 or Norm2
The mantissa is rounded off to 10 digits．

Rounding for Fix or Sci

The value is rounded to the specified number of digits．

Example： $200 \div 7 \times 14=400$	$200 \div 7 \times 14$
	200：7×14 400
（3 decimal places）	
Sshlf］［100E（1）$]^{(\mathrm{Fix})} \mathbf{3}$	$200 \div 7 \times 14$ 400000
（Internal calculation uses 15 digits．）	200 7 －fix
	28571
区 4 國	Ansx14 ${ }^{\text {Fix }}$
－ 4 这	400000

（Rounded result）

Ans $\times 14$
399994

Using $\mathbf{1 0}^{\mathbf{3}}$ Engineering Notation

 （ENG）Engineering notation（ENG）expresses quantities as a product of a positive number Engineerin and 10 and 1 ENG）expresser quas 10 that is always a multiple of three There number between 1 and 10 and a power of 10 that is always a multiple of three．There are two types
of engineering notation， $\mathrm{ENG} \rightarrow$ and $\mathrm{ENG} \leftarrow$

Function	Key Operation
ENG \rightarrow	
ENG \leftarrow	（5xnir（exa (\leftarrow)

－ENG Calculation Examples
Example 1：To convert 1234 to engineering notation using ENG -

（1）［2］（4）	1234	
		1234.
（1）	1234	$1234 \times{ }^{33}$
（10］	1234	$1234{ }^{00}$

（1）
123
123.

（1）（
${ }^{123} 0000123 \times 10^{96}$

Complex Number Calculations （CMPLX）
To perform the example operations in this section，first select CMPLX（造E 2）as the calculation mode．
－Inputting Complex Numbers
【】 Inputting Imaginary Numbers（i）
In the CMPLX Mode，the ENG key is used to input the imaginary number i ．Use ENO（ i ）when inputting complex numbers using rectangular coordinate format $(a+b i)$
Example：To input $2+3 i$

$$
\text { (2) } \triangle \text { (} \operatorname{ENO}(i) \quad 2+3 i i^{\mathrm{cmplx}}
$$

【】 Inputting Complex Number Values Using Polar Coordinate Format
Complex numbers can also be input using polar coordinate format $(r \angle \theta)$ ．
Example：To input $5 \angle 30$

Important！
When inputting argument θ ，enter a value that indicates an angle in accordance with the calculator＇s current default angle unit setting．

Complex Number Calculation Result Display
When a calculation produces a complex number result，R $\Leftrightarrow I$ symbol turns on in the upper right corner of the display and the only the real part appears at first．To toggle the display between the real part and the imaginary part，press shnf $\operatorname{Exxe}(\mathrm{Re} \Leftrightarrow \mathrm{m})$ ．
Example：To input $2+1 i$ and display its calculation result
Before starting the calculation，you need to perform the following operation to change the complex number display setting to＂$a+b \boldsymbol{l}$＂as shown below．
To select rectangular coordinate format：shtif

E－34

【．Polar Coordinate Format（ $\mathbf{r} \angle \boldsymbol{\theta}$ ）
（sNNN IOODE（SETUP）（1）©（1）（1）$(r \angle \theta)$
Example 1： $2 \times(\sqrt{3}+i)=2 \sqrt{3}+2 i=4 \angle 30$
\angle sy
it：

Conjugate Complex Number（Conjg）

You can perform the operation below to obtain conjugate complex number $\bar{z}=a+b i$ for the complex number $z=a+b i$ ．
Example：Obtain the conjugate complex number of $2+3 i$

Absolute Value and Argument（Abs，arg）

You can use the procedure shown below to obtain the absolute value（ $|z|$ ）and argument（arg） on the Gaussian plane for a complex number in the format $z=a+b i$ ． Example：
Example： （Angle Unit：Deg）

D Default Complex Number Calculation Result Display Format You can select either rectangular coordinate format or polar coordinate format for complex number calculation results．

Use the setup screens to specify the default display format you want．For details，see ＂Specifying the Complex Number Display Format＂（page 9）．

Calculation Result Display Examples

）Rectangular Coordinate Format（a＋bi）
sㅐㅍN
Example 1： $2 \times(\sqrt{3}+i)=2 \sqrt{3}+2 i=3.464101615+2 i$

$$
2 \times(\sqrt{(20 x)}+i)
$$

3.464101615
（sㅐNI）ㅌxe $(\mathrm{Re} \Leftrightarrow \mathrm{Im})$
Example 2：$\sqrt{2} \angle 45=1+1 i$（Angle Unit：Deg）

Sshlfir Exe（Re $\Leftrightarrow 1 \mathrm{~m}$ ）	$2 \times(\sqrt{(3)}+i) \quad 2 . i$
Deg）	
	$\sqrt{(2)} \angle 45$
Sshlf］Exe（ $\mathrm{Re} \Leftrightarrow \mathrm{lm}$ ）	$\sqrt{(2)} \angle 45^{\text {chaplx }}$

E－35

Absolute Value：		$\begin{aligned} & \text { Abs }(2+2 \text { chpix } i) \\ & 2828427125 \end{aligned}$
Argument：		$\arg (2+2 i)$
		45

Overriding the Default Complex Number Display Format You can use the procedures described below to override the default complex number display format and specify a particular display format for the calculation you are currently inputting．
【 Specifying Rectangular Coordinate Format for a Calculation Input shrif $-(\checkmark a+b i)$ at the end of the calculation
Example： $2 \sqrt{2} \angle 45=2+2 \boldsymbol{i}$（Angle Unit：Deg）

【 Specifying Polar Coordinate Format for a Calculation Input shrir $⿴ 囗 十 \Delta r \angle \theta)$ at the end of the calculation．
Example： $2+2 i=2 \sqrt{2} \angle 45=2.828427125 \angle 45$（Angle Unit：Deg）

Statistical Calculations（SD／REG）

Statistical Calculation Sample Data

E Inputting Sample Data

You can input sample data either with statistical frequency turned on（FreqOn）or off（FreqOff） The calculator＇s initial default setting is FreqOn．You can select the input method you want to use with the setup screen statistical frequency setting（page 9 ）．
© Maximum Number of Input Data Items
The maximum number of data items you can input depends on whether frequency is on The maximum number of
（FreqOn）or off（FreqOff）．

Frequency Setting	FreqOn	FreqOff
SD Mode	40 items	80 items
REG Mode	26 items	40 items

K Sample Data Clear

All sample data currently in memory is cleared whenever you change to another calculation mode and when you change the statistical frequency setting．

Performing Single－variable Statistical Calculations

 mode．

E Inputting Sample Data

Frequency On（FreqOn）
The following shows the key operations required when inputting class values $x 1, x 2, \ldots x n$ ， and frequencies Freq1，Freq2，．．．Freqn

Note
If the frequency of a class value is only one，you can input it by pressing $\{x n\}\lfloor$（m）（DT）only （without specifying the frequency）

When the statistical frequency setting is FreqOn，data is displayed in the sequence：$x 1$ ， Freq1，x_{2} ，Freq2，and so on．In the case of FreqOff，it is displayed in the sequence：x_{1}, x_{2} ， x_{3} ，and so on．You can also use © © to scroll in the reverse direction．

【 Editing a Data Sample

To edit a data sample，recall it，input the new value（s），and then press Exe
Example：To edit the＂Freq3＂data sample input under＂Inputting Sample Data＂on page 38

K Deleting a Data Sample

To delete a data sample，recall it and then press ssiff ©（CL）
Example：To delete the＂x2＂data sample input under＂Inputting Sample Data＂on page 38

Note
－The following shows images of how the data appears before and after the delete operation．

When the statistical frequency setting is turned on（FreqOn），the applicable x－data and Freq data pair is deleted．

Example：To input the following data

Class Value（x）	Frequency（Freq）
24.5	4
25.5	6
26.5	2

2	
	24.5 so 0
网（DT）	Line ${ }^{\text {so }}=1$.
［⿴囗十介（（DT）tells the calculator this is the end of the first data item．	
	Line ${ }^{\text {so }} 2$
	Line ${ }^{\text {so }}=3$

Frequency Off（FreqOff）
In this case，input each individual data item as shown below．

\Viewing Current Sample Data

After inputting sample data，you can press \odot to scroll through the data in the sequence you input it．The ∇ symbol indicates there is data below the sample that is currently on the display．The $\boldsymbol{\Delta}$ symbol indicates there is data above．

Example：To view the data you input in the example under＂Inputting Sample Data＂on page 38 （Frequency Setting：FreqOn）

1°		
		0.
－	x1 $=$＂	
		24.5
－	Frecil ${ }^{\text {a }}$	

E－39

Deleting All Sample Data

erform the following key operation to delete all sample data．
SHifl （CLR） 1 （Stat）Ex
If you do not want to delete all sample data，press $\triangle C$ in place of $\mathbb{E x E}$ in the above operation．

【 \searrow Statistical Calculations Using Input Sample Data

To perform a statistical calculation，input the applicable command and then press Exere．To determine the mean (\bar{x}) value of the current input sample data，for example，perform the operation shown below．

Σx^{2}［sHfrr 1 （S－SUM） 1	$x \sigma_{n} \quad$ SHIFIT［（S－VAR） 2
Obtains the sum of squares of the sample data． $\Sigma x^{2}=\Sigma x_{i}^{2}$	Obtains the population standard deviation． $x \sigma_{n}=\sqrt{\frac{\Sigma\left(x_{i}-\bar{x}\right)^{2}}{n}}$
Σx SHHTN（S－SUM） 2	$x \sigma_{n-1} \quad$［H4Fr］［2（S－VAR） 3
Obtains the sum of the sample data． $\Sigma x=\Sigma x_{i}$	Obtains the sample standard deviation． $x \sigma n-1=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$
Obtains the number of samples．	
\bar{x}－shltr［2（S－VAR） 1	Determines the minimum value of the samples．
Obtains the mean． $\bar{x}=\frac{\sum x_{i}}{n}$	samples．

Performing Paired－variable Statistical Calculations

To perform the example operations in this section，first select REG（N00E 5）as the calculation mode．

【 Regression Calculation Types
The REG Mode lets you perform the seven types of regression listed below．The figures in the parentheses show the theoretical formulas．

－Linear	$(y=a+b x)$
－Quadratic	$\left(y=a+b x+c x^{2}\right)$
－Logarithmic	$(y=a+b \ln x)$
－e Exponential	$\left(y=a e^{b x}\right)$
－ab Exponential	$\left(y=a b^{x}\right)$
－Power	$\left(y=a x^{b}\right)$
－Inverse	$(y=a+b / x)$

Each time you enter the REG Mode，you must select the type of regression calculation you plan to perform．

Selecting the Regression Calculation Type
1．Press nooe 5 （REG）to enter the REG Mode．
－This displays the initial regression calculation selection menu．The menu has two screens，and you can use $(\mathbb{1})$ and $(\mathbb{)}$ to navigate between them．

$$
\begin{array}{|cccc}
\hline \text { Lin } & \text { Log } & \text { Exp Pwr } \\
1 & 2 & 3 & 4
\end{array} \leftrightarrows \begin{array}{ccc}
\hline \text { Inv Quad AB-Exp } \\
1 & 2 & 3
\end{array}
$$

2．Perform one of the following operations to select the regression calculation you want．

To select this regression type：	And press this key：
Linear	11（Lin）
Logarithmic	2）（Log）
e Exponential	3 （Exp）
Power	4 （Pwr）
Inverse	（1） 1 （Inv）
Quadratic	（1）2（Quad）
$a b$ Exponential	（1） 3 （AB－Exp）

Note
You can switch to another regression calculation type from within the REG Mode，if you want．Pressing（shrif 2（S－VAR）3（TYPE）will display a menu screen like the one shown in step 1 above．Perform the same operation as the above procedure to select the regression calculation type you want．

E－42

\} Inputting Sample Data

Frequency On（FreqOn）

The following shows the key operations required when inputting class values $\left(x_{1}, y 1\right),\left(x_{2}\right.$ ，
$\left.y_{2}\right), \ldots(x n, y n)$ ，and frequencies Freq1，Freq2，．．．Freq n

Note
Note frequency of a class value is only one，you can input it by pressing $\{x n\} \square\{y n\}\left[\begin{array}{ll}\text {（DT }\end{array}\right.$（DT）
only（without specifying the frequency）．

Frequency Off（FreqOff）

In this case，input each individual data item as shown below．
$\left.\{x 1\} \square^{\{y 1}\right\}$ 㽗（DT）
$\{x 2\}$ Q $\{y 2\}$（DT）

V Viewing Current Sample Data

After inputting sample data，you can press \odot to scroll through the data in the sequence you input it．The $\boldsymbol{\nabla}$ symbol indicates there is data below the sample that is currently on the display．The $\boldsymbol{\Delta}$ symbol indicates there is data above．
When the statistical frequency setting is FreqOn，data is displayed in the sequence：$x 1, y 1$ ，
Freq1，x_{2}, y_{2} ，Freq2，and so on．In the case of FreqOff，it is displayed in the sequence：x_{1} ，
$y 1, x_{2}, y_{2}, x_{3}, y 3$ ，and so on．You can also use（4）to scroll in the reverse direction．

I Editing a Data Sample

To edit a data sample，recall it，input the new value（s），and then press 医．
D Deleting a Data Sample

V Deleting All Sample Data
See＂Deleting All Sample Data＂（page 41）．
V Statistical Calculations Using Input Sample Data
To perform a statistical calculation，input the applicable command and then press 四日．To determine the mean（ \bar{x} or \bar{y} ）value of the current sample data，for example，perform the operation shown below．

43

	$y \sigma_{n}$ SHHIT］（S－VAR） 1 （VAR）（1） 2
Obtains the sample standard deviation of the sample x－data．	Obtains the population standard deviation of the sample y－data．
$x \sigma n-1=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$	$y \sigma n=\sqrt{\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n}}$
	$y \sigma_{n-1}$ shlre 2 （S－VAR） 1 （VAR）（1） 3
	Obtains the sample standard deviation of the sample y－data
Obtains the mean of the sample y－data． $\bar{y}=\frac{\Sigma y_{i}}{n}$	$y \sigma n-1=\sqrt{\frac{\sum\left(y_{i}-\bar{y}\right)^{2}}{n-1}}$

Regression Coefficient and Estimated Value Commands for Non－ quadratic Regression（VAR Menu）
The calculation that is performed when one of these commands is performed depends on he regression type that is currently selected．For details about each regression calculation formula，see＂Regression Coefficient and Estimated Value Calculation Formula Table＂（page 47）．

Obtains constant term a of the regression formula．

Obtains coefficient b of the regression formula．
 Obtains correlation coefficient r ．
\hat{x}

Taking the value input immediately before this command as the y－value，obtains the estimated value of x based on the regression formula for the currently selected regressio calculation．
$\hat{\boldsymbol{y}}$
Taking the value input immediately before this command as the x－value， （VAR）© 24
Taking the value input immediately before this command as the x－value，obtains the calculation．

Regression Coefficient and Estimated Value Commands for Quadratic Regression (VAR Menu)
For details about the formula that is executed by each of these commands, see "Regression Coefficient and Estimated Value Calculation Formula Table" (page 47).

Taking the value input immediately before this command as the y-value, uses the formula on page 47 to determine one estimated value of x.
\hat{x}_{2} [sHIFI [2(S-VAR) [1 (VAR) © [2]
Taking the value input immediately before this command as the y-value, uses the formula on page 47 to determine one more estimated value of x.
$\hat{\boldsymbol{y}}$
Taking the value input immediately before this command as the x-value, uses the formula on page 47 to determine the estimated value of y.

Minimum and Maximum Value Commands (MINMAX Menu)

$\min X$	
Obtains the minimum value of the sample x-data.	
maxX	

maxX
SHIFI $2(\mathrm{~S}-\mathrm{VAR})$ (MINMAX) © (1)
$\min Y$
Obtains the minimum value of the sample y-data
$\max Y$
SHIIT (2)(S-VAR) 2 (MINMAX) © 2
Obtains the maximum value of the sample y-data

E-46

Logarithmic Regression

Command	Calculation Formula
Regression Formula Constant Term a	$\mathrm{a}=\frac{\Sigma y_{i}-\mathrm{b} \cdot \Sigma \ln x_{i}}{n}$
Regression Coefficient b	$\mathrm{b}=\frac{n \cdot \Sigma\left(\ln x_{i}\right) y_{i}-\Sigma \ln x_{i} \cdot \Sigma y_{i}}{n \cdot \Sigma\left(\ln x_{i}\right)^{2}-\left(\Sigma \ln x_{i}\right)^{2}}$
Correlation Coefficient r	$\mathrm{r}=\frac{n \cdot \Sigma\left(\ln x_{i}\right) y_{i}-\Sigma \ln x_{i} \cdot \Sigma y_{i}}{\sqrt{\left\{n \cdot \Sigma\left(\ln x_{i}\right)^{2}-\left(\Sigma \ln x_{i}\right)^{2}\right\}\left\{n \cdot \Sigma y_{i}{ }^{2}-\left(\Sigma y_{i}\right)^{2}\right\}}}$
Estimated Value \hat{x}	$\hat{x}=e^{\frac{y-\mathrm{a}}{\mathrm{b}}}$
Estimated Value \hat{y}	$\hat{y}=\mathrm{a}+\mathrm{bln} x$

\boldsymbol{e} Exponential Regression

Command	Calculation Formula
Regression Formula Constant Term a	$\mathrm{a}=\exp \left(\frac{\Sigma \ln y_{i}-\mathrm{b} \cdot \Sigma x_{i}}{n}\right)$
Regression Coefficient b	$\mathrm{b}=\frac{n \cdot \Sigma x_{i} \ln y_{i}-\Sigma x_{i} \cdot \Sigma \ln y_{i}}{n \cdot \Sigma x_{i}{ }^{2}-\left(\Sigma x_{i}\right)^{2}}$
Correlation Coefficient r	$\mathrm{r}=\frac{n \cdot \Sigma x_{i} \ln y_{i}-\Sigma x_{i} \cdot \Sigma \ln y_{i}}{\sqrt{\left\{n \cdot \Sigma x_{i}{ }^{2}-\left(\Sigma x_{i}\right)^{2}\right\}\left\{n \cdot \Sigma\left(\ln y_{i}\right)^{2}-\left(\Sigma \ln y_{i}\right)^{2}\right\}}}$
Estimated Value \hat{x}	$\hat{x}=\frac{\ln y-\ln \mathrm{a}}{\mathrm{b}}$
Estimated Value \hat{y}	$\hat{y}=\mathrm{a} e^{\mathrm{b} x}$

$a b$ Exponential Regression

Command	Calculation Formula
Regression Formula Constant Term a	$\mathrm{a}=\exp \left(\frac{\Sigma \ln y_{i}-\ln \mathrm{b} \cdot \Sigma x_{i}}{n}\right)$
Regression Coefficient b	$\mathrm{b}=\exp \left(\frac{n \cdot \Sigma x_{i} \ln y_{i}-\Sigma x_{i} \cdot \Sigma \ln y_{i}}{n \cdot \sum x_{i}{ }^{2}-\left(\Sigma x_{i}\right)^{2}}\right)$
Correlation Coefficient r	$\mathrm{r}=\frac{n \cdot \Sigma x_{i} \ln y_{i}-\Sigma x_{i} \cdot \Sigma \ln y_{i}}{\sqrt{\left\{n \cdot \Sigma x_{i}{ }^{2}-\left(\sum x_{i}\right)^{2}\right\}\left\{n \cdot \Sigma\left(\ln y_{i}\right)^{2}-\left(\Sigma \ln y_{i}\right)^{2}\right\}}}$

I Regression Coefficient and Estimated Value Calculation

 Formula TableThe following table shows the calculation formulas used by the regression coefficient and estimated value commands for each regression calculation type.
Linear Regression

Command	Calculation Formula
Regression Formula Constant Term a	$\mathrm{a}=\frac{\Sigma y_{i}-\mathrm{b} \cdot \Sigma x_{i}}{n}$
Regression Coefficient b	$\mathrm{b}=\frac{n \cdot \sum x_{i} y_{i}-\sum x_{i} \cdot \Sigma y_{i}}{n \cdot \Sigma x_{i}{ }^{2}-\left(\Sigma x_{i}\right)^{2}}$
Correlation Coefficient r	$\mathrm{r}=\frac{n \cdot \sum x_{i} y_{i}-\Sigma x_{i} \cdot \Sigma y_{i}}{\sqrt{\left\{n \cdot \sum x_{i}{ }^{2}-\left(\Sigma x_{i}\right)^{2}\right\}\left\{n \cdot \Sigma y_{i}{ }^{2}-\left(\Sigma y_{i}\right)^{2}\right\}}}$
Estimated Value \hat{x}	$\hat{x}=\frac{y-\mathrm{a}}{\mathrm{b}}$
Estimated Value \hat{y}	$\hat{y}=\mathrm{a}+\mathrm{b} x$

Quadratic Regression

Command	Calculation Formula
Regression Formula Constant Term a	$\mathrm{a}=\frac{\Sigma y_{i}}{n}-\mathrm{b}\left(\frac{\Sigma x_{i}}{n}\right)-\mathrm{c}\left(\frac{\Sigma x_{i}^{2}}{n}\right)$
Regression Coefficient b	$\mathrm{b}=\frac{\mathrm{S} x y \cdot \mathrm{~S} x^{2} x^{2}-\mathrm{S} x^{2} y \cdot \mathrm{~S} x x^{2}}{\mathrm{~S} x \cdot \mathrm{~S} x^{2} x^{2}-\left(\mathrm{S} x x^{2}\right)^{2}}$
Regression Coefficient c	$\mathrm{c}=\frac{\mathrm{S} x^{2} y \cdot \mathrm{~S} x x-\mathrm{S} x y \cdot \mathrm{~S} x x^{2}}{\mathrm{~S} x x \cdot \mathrm{~S} x^{2} x^{2}-\left(\mathrm{S} x x^{2}\right)^{2}}$

However,

$$
S x x=\Sigma x_{i}^{2}-\frac{\left(\Sigma x_{i}\right)^{2}}{n}
$$

$$
S x x^{2}=\Sigma x_{i}^{3}-\frac{\left(\Sigma x_{i} \cdot \Sigma x_{i}^{2}\right)}{n}
$$

$$
S x y=\Sigma x_{i} y_{i}-\frac{\left.n^{\left(\Sigma x_{i}\right.} \cdot \Sigma y_{i}\right)}{n}
$$

$$
S x^{2} x^{2}=\Sigma x_{i}{ }^{4}-\frac{\left(\Sigma x_{i}\right)^{2}}{n}
$$

$$
S x^{2} y=\Sigma x_{i}{ }^{2} y_{i}-\frac{\left(\Sigma x_{i}^{2} \cdot \Sigma y_{i}\right)}{n}
$$

Command	Calculation Formula
Estimated Value \hat{x}_{1}	$\hat{x} 1=\frac{-b+\sqrt{b^{2}-4 c(a-y)}}{2 c}$
Estimated Value \hat{x}_{2}	$\hat{x} 2=\frac{-b-\sqrt{b^{2}-4 c(a-y)}}{2 c}$
Estimated Value \hat{y}	$\hat{y}=\mathrm{a}+\mathrm{b} x+\mathrm{c} x^{2}$
$\mathrm{E}-47$	

Command	Calculation Formula
Estimated Value \hat{x}	$\hat{x}=\frac{\ln y-\ln \mathrm{a}}{\ln }$
Estimated Value \hat{y}	$\hat{y}=\mathrm{ab}^{x}$

Power Regression

Command	Calculation Formula
Regression Formula Constant Term a	$\mathrm{a}=\exp \left(\frac{\Sigma \ln y_{i}-\mathrm{b} \cdot \Sigma \ln x_{i}}{n}\right)$
Regression Coefficient b	$\mathrm{b}=\frac{n \cdot \Sigma \ln x_{i} \ln y_{i}-\Sigma \ln x_{i} \cdot \Sigma \ln y_{i}}{n \cdot \Sigma\left(\ln x_{i}\right)^{2}-\left(\Sigma \ln x_{i}\right)^{2}}$
Correlation Coefficient r	$\mathrm{r}=\frac{n \cdot \Sigma \ln x_{i} \ln y_{i}-\Sigma \ln x_{i} \cdot \Sigma \ln y_{i}}{\sqrt{\left\{n \cdot \Sigma\left(\ln x_{i}\right)^{2}-\left(\Sigma \ln x_{i}\right)^{2}\right\}\left\{n \cdot \Sigma\left(\ln y_{i}\right)^{2}-\left(\Sigma \ln y_{i}\right)^{2}\right\}}}$
Estimated Value \hat{x}	$\hat{x}=e^{\frac{\ln y-\ln \mathrm{a}}{\mathrm{b}}}$
Estimated Value \hat{y}	$\hat{y}=\mathrm{ax}$

Inverse Regression

Command	Calculation Formula
Regression Formula Constant Term a	$\mathrm{a}=\frac{\Sigma y_{i}-\mathrm{b} \cdot \Sigma x_{i}^{-1}}{n}$
Regression Coefficient b	$\mathrm{b}=\frac{S x y}{S x x}$
Correlation Coefficient r	$\mathrm{r}=\frac{S x y}{\sqrt{S x x \cdot S y y}}$

However, $\quad S x x=\Sigma\left(x_{i}^{-1}\right)^{2}-\frac{\left(\Sigma x_{i}^{-1}\right)^{2}}{n}$
$S y y=\Sigma y_{i}{ }^{2}-\frac{\left(\Sigma y_{i}\right)^{2}}{n}$
$S x y=\Sigma\left(x_{i}^{-1}\right) y_{i}-\frac{\Sigma x_{i}^{-1} \cdot \Sigma y_{i}}{n}$

Command	Calculation Formula
Estimated Value \hat{x}	$\hat{x}=\frac{\mathrm{b}}{y-\mathrm{a}}$
Estimated Value \hat{y}	$\hat{y}=\mathrm{a}+\frac{\mathrm{b}}{x}$

Statistical Calculation Examples

This section provides some actual examples of statistical calculation examples as they are performed on your calculator．
Example 1：The nearby table shows the pulse rates of 50 students who attend a high school for boys Determine the mean and standard deviation of the sample data．

Operation Procedure

Pulse Rate	Students
$54-56$	1
$56-58$	2
$58-60$	2
$60-62$	5
$62-64$	8
$64-66$	9
$66-68$	8
$68-70$	6
$70-72$	4
$72-74$	3
$74-76$	2

Select the SD Mode：wiooe（4）（SD）
Select FreqOn for the statistical frequency settin
Input the sill
Input the sample dat

E－50

Regression Coefficient b：	
	$\begin{aligned} & b \\ & 2425.756228 \end{aligned}$
Correlation Coefficient：	${ }_{\text {neg }}$
	0.991493123

3）Weight Prediction
The absolute value of the correlation coefficient for logarithmic regression is closer to 1 ，so perform the weight prediction calculation using logarithmic regression．

Obtain \hat{y} when $x=350$

3 50	$350 \hat{y}{ }^{\text {Re6 }}$
	1000056129

Base－n Calculations（BASE）

To perform the example operations in this section，first select BASE（1100E 3）as the calculation mode．

Performing Base－n Calculations
\} Specifying the Default Number Base
Use the following keys to select a default number base

$$
\begin{array}{cccc}
\text { DEC } & \sqrt[x]{\text { HEX }} & 10^{x} \text { BIN } & \mathrm{e}^{x} \text { OCT } \\
\boldsymbol{x}^{2} & \log & \ln
\end{array}
$$

To select this number base：	Press this key：	Screen Indicator
Decimal	x ${ }^{2}$（DEC）	d
Hexadecimal	囚（HEX）	H
Binary	［109（BIN）	b
Octal	［10（OCT）	o

Example 2：The nearby data shows how the weight of a newborn at various numbers of days after birth． （1）Obtain the regression formula and correlation coefficient produced by linear regression of the data
2）Obtain the regression formula and correlation coefficien produced by logarithmic regression of the data．
（3）Predict the weight 350 days after birth based on the
regression formula that best fits the trend of the data in
accordance with the regression results．

Operation Procedure

Enter the REG Mode and select linear regression：

Number of Days	Weight $\mathbf{g})$
20	3150
50	4800
80	6420
110	7310
140	7940
170	8690
200	8800
230	9130
260	9270
290	9310
320	9390

Select FreqOiff for the statistical frequency setting： Off for the statistical frequency setting：
（SHIFI H000（SETUP）©（4） 2 （FreqOff）
Input the sample data：

 300093000 （DT）
（1）Linear Regression

Regression Formula Contant Term a：	a 4446575758
Regression Coefficient b：	b 1887575758
Correlation Coefficient：	0904793561
（2）Logarithmic Regression Select logarithmic regression：	$x_{1}=\begin{array}{ll} \text { REG } \\ & 20 . \\ \hline \end{array}$
Regression Formula Contant Term a： 	$\text { a } 4209356544$

E－51

【】 Example Base－n Calculations
Example 1：To select binary as the number base and calculate $1_{2}+1_{2}$

Example 2：To select octal as the number base and calculate $7_{8}+1_{8}$

－Inputting an invalid value causes a Syntax ERROR．
－In the BASE Mode，input of fractional（decimal）values and exponential values is not
supported．Anything to the right of the decimal point of calculation results is cut off．
】 Hexadecimal Value Input and Calculation Example Use the following keys to input the letters required for hexadecimal values（A，B，C，D，E，F）．

Example：To select hexadecimal as the number base and calculate $1 \mathrm{~F}_{16}+1_{16}$

\} Effective Calculation Ranges

Number Base	Effective Range
Binary	Positiv：： $0 \leqq x \leqq 11111111$ Negative： $1000000000 \leqq x \leqq 1111111111$
Octal	Positive： $0 \leqq x \leqq 3777777777$ Negative： $4000000000 \leqq x \leqq 7777777777$
Decimal	$-2147483648 \leqq x \leqq 2147483647$
Hexadecimal	Positive： $0 \leqq x \leqq 7$ FFFFFFF Negative： $80000000 \leqq x \leqq$ FFFFFFFF

A Math ERROR occurs when a calculation result is outside of the applicable range for the current default number base．

Converting a Displayed Result to another Number Base
 will convert the result to the corresponding number base
Example：To convert the decimal value 30_{10} to binary，octal，and hexadecimal format

Using the LOGIC Menu
In the BASE Mode，the $[x]$ key changes function to become a LOGIC menu display key The LOGIC menu has three screens，and you can use © and © to navigate between them．

Specifying a Number Base for a Particular Value
You can specify a number base that is different from the current default number base while inputting a value．
【 Specifying the Number Base during Input
Inputting a decimal value of 3 ，for example，can be performed using the following key operation

$$
x(\text { LOGIC })(1)(d) \sqrt{3} \sqrt{13 I}
$$

E－54

$$
5
$$

【】Complement／Inversion（Not）

Returns the complement（bitwise inversion）of a value．
Example： $\operatorname{Not}\left(1010_{2}\right)=1111110101_{2}$

K $\mathbf{\lambda}$ Negation（Neg）

Returns the twos complement of a value．
Example： $\operatorname{Neg}\left(101101_{2}\right)=1111010011_{2}$

Built－in Formulas

Your calculator has 23 built－in formulas for mathematics and physics，which can be used in the COMP Mode．

Using Built－in Formulas
$\boxed{\Sigma}$ Selecting a Built－in Formula by Its Formula Number
1．Press funm．
－This will display the message＂Formula No．？＂
2．Input the two－digit formula number（01 to 23）of the formula you want to recall．
－For a list of formulas and their numbers，see the＂Built－in Formula List＂（page 58）

【 $\$ Selecting a Built－in Formula by Scrolling

1．Press EMLA．
2．Use \odot and（4）to scroll through the built－in formulas until the one you want to recall is on the display．
【．Performing Calculation with a Built－in Formula
The following example shows how to use Heron＇s formula to determine the area of a triangle when the lengths of its three sides $(8,5,5)$ are known．
Operation Procedure
Recall Heron＇s formula：

$$
\begin{aligned}
& \text { Not(1010) } \\
& \text { 1111110101. }
\end{aligned}
$$

【 Example Calculation Using Base－ \boldsymbol{n} Specification
Example：To perform the calculation $5_{10}+5_{16}$ ，and display the result in binary

Performing Calculations Using Logical Operations and Negative Binary Values
Your calculator can perform 10－digit（10－bit）binary logical operations and negative value calculations．All of the examples shown below are performed with BIN（binary）set as the default number base．
L Logical Product（and）
Returns the result of a bitwise product
Example： 1010_{2} and $1100_{2}=1000_{2}$
10 0 国（LOGIC） 1 （and） 1010 and1100
10100 国
$1000 .{ }^{\circ}$
K Logical Sum（or）
Returns the result of a bitwise sum．
Example： 1011_{2} or $11010_{2}=11011_{2}$

$$
\begin{aligned}
& \text { 100 (1) (LOGIC) } 2 \text { (or) } 10110111010
\end{aligned}
$$

【】 Exclusive Logical Sum（xor）
Returns the result of a bitwise exclusive logical sum．
Example： 1010_{2} xor $1100_{2}=110_{2}$

$$
\begin{aligned}
& \text { 110 } 0 \text { 国 }
\end{aligned}
$$

Exclusive Logical Sum Negation（xnor）
Returns the result of the negation of a bitwise exclusive logical sum．
Example： 1111_{2} xnor $101_{2}=1111110101_{2}$
110（1）（LOGIC） 3 （xnor） 1111 xnor 101

E－55

	（Prompt for input for variable a ）	$a^{\text {？}}$	0.
Input 8 for variable a ：			
	8 ［ 8 同	$\mathrm{b}^{\text {？}}$	0.
Input 5 for variable b ：			
	5 ［ $5 \times$	$c^{\text {？}}$	0.
Input 5 for variable c ：		03：HeronFormula	
	5 ［ 5		12.

－As shown above，the calculation result appears after you assign values to all of the required variables．
required variables．
－Pressing 这E while a calculation result is on the display will re－execute the formula from the beginning．
【】 Special Built－in Formula Variables（Formula Variables）
When you perform a calculation using a built－in formula，you assign values to the variables of the formula and calculate the result．In addition to the a, b ，and c variables we saw of the formula and calculate the result．In addition to the a, b ，and c variables we saw
in Heron＇s formula above，there are also variables named r, t, v, ρ ，and θ ．Since these variables are used only in built－in formulas，they are called formula variables．
Values you assign to formula variables when you perform a calculation with a built－in formula are retained until you change to another calculation mode，perform a memory clear
 means that you can execute a built－in calculation multiple times leaving one or more of the variables assigned with the same values as a previous execution，if you want．
Pressing Exe after performing the operation under＂Performing Calculation with a Built－in Formula＂will display the variable assignment screen again，with the previously assigned values as the initial defaults．

If you want to laze the dislayed value assigned to the varibe pariab pressing 逐e will leave 8 assigned to variable a ．
Note
Even if you select a different built－in formula，all variables that have the same names as the previously used formula will retain their current values．

Built-in Formula List

No. 01 Quadratic Equation Solution

Solves a quadratic equation using values you specify for a, b, and c.

$$
a x^{2}+b x+c=0 \quad\left(a \neq 0, b^{2}-4 a c \geqq 0\right)
$$

No. 02 Cosine Theorem

For a triangle for which the lengths of two sides (b and c) and the angle (θ) formed by them are known, determines the length of remaining side.

$$
a=\sqrt{b^{2}+c^{2}-2 b c \cos \theta} \quad\left(b, c>0,0^{\circ}<\theta \leqq 180^{\circ}\right)
$$

No. 03 Heron's Formula
Determines the area (S) of a triangle when the lengths of its three sides (a, b, c) are known.

$$
\begin{aligned}
& S=\sqrt{s(s-a)(s-b)(s-c)}, s=\frac{(a+b+c)}{2} \\
& (a+b>c>0, b+c>a>0, c+a>b>0)
\end{aligned}
$$

No. 04 Normal Probability Function $\mathbf{P}(x)$

Uses Hastings' estimate formula to determine the probability of a standard normal distribution $\mathrm{P}(x)$ illustrated below when the standardized variate (x) is known.

$$
\begin{aligned}
\mathrm{P}(x) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} d t \\
(0 & \left.\leqq x<1 \times 10^{50}\right)
\end{aligned}
$$

Important!
Since this is an estimate formula, proper precision may not be obtainable

No. 05 Normal Probability Function $\mathbf{Q}(\boldsymbol{x})$

Uses Hastings' estimate formula to determine the probability of a standard normal distribution $\mathrm{Q}(x)$ illustrated below when the standardized variate (x) is known.

$$
\mathrm{Q}(x)=\frac{1}{\sqrt{2 \pi}} \int_{0}^{|x|} e^{-\frac{t^{2}}{2}} d t
$$

$$
\left(0 \leqq x<1 \times 10^{50}\right)
$$

Important!

Since this is an estimate formula, proper precision may not be obtainable

No. 12 Impedance in an LRC Parallel Circuit

Determines the impedance (Z) of an LRC parallel circuit of frequency f, when resistance $(\mathrm{R}$), coil inductance (L), and capacitance (C) are known

$$
Z=\frac{1}{\sqrt{\left(\frac{1}{\mathrm{R}}\right)^{2}+\left(2 \pi f \mathrm{C}-\frac{1}{2 \pi f \mathrm{~L}}\right)^{2}}}
$$

$$
(\mathrm{R}, f, \mathrm{~L}, \mathrm{C}>0)
$$

Units: $f: \mathrm{Hz}, \mathrm{C}: \mathrm{F}, \mathrm{L}: \mathrm{H}, \mathrm{R}$ and $\mathrm{Z}: \Omega$

No. 13 Frequency of Electric Oscillation

Determines the harmonic oscillation frequency $\left(f_{1}\right)$ of a series resonance circuit when the coil self-inductance (L) and capacitance (C) are known.

$$
f_{1}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}} \quad(\mathrm{~L}, \mathrm{C}>0) \quad \text { Units: } \mathrm{L}: \mathrm{H}, \mathrm{C}: \mathrm{F}, f_{1}: \mathrm{Hz}
$$

No. 14 Distance of Drop

Determines the distance of drop (S) after t seconds of an object dropped straight down (gravitational direction) at an initial velocity of ν_{1} (air friction disregarded).

$$
\mathrm{S}=v_{1} t+\frac{1}{2} g t^{2} \quad(g: \text { gravitational acceleration, } t \geqq 0)
$$

$$
\text { Units: } \quad v_{1}: \mathrm{m} / \mathrm{s}, t \text { : seconds, } \mathrm{S}: \mathrm{m}
$$

No. 15 Cycle of Simple Pendulum
Determines the cycle (T) of a simple pendulum with a string of length ℓ

$$
\mathrm{T}=2 \pi \sqrt{\frac{\ell}{g}} \quad(g: \text { gravitational acceleration, } \ell>0) \quad \text { Units: } \quad \ell: \mathrm{m}, \mathrm{~T} \text { : seconds }
$$

No. 16 Cycle of Spring Pendulum

Determines the cycle of simple oscillation (T) of a spring pendulum when the mass of the weight (m) and the spring constant of the spring (k) are known

$$
\mathrm{T}=2 \pi \sqrt{\frac{m}{k}} \quad(m, k>0)
$$

$$
\text { Units: } m: \mathrm{kg}, k: \mathrm{N} / \mathrm{m}, \mathrm{~T}: \text { seconds }
$$

No. 06 Coulomb's Law
Determines the force (F) between two charges of quantities Q and q, over a separation of r.

$$
\mathrm{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\mathrm{Q} q}{r^{2}} \quad(r>0) \quad\left(\varepsilon_{0} \text { : permittivity }\right)
$$

Units: $\mathrm{Q}, q: \mathrm{C}, r: \mathrm{m}$

No. 07 Resistance of a Conducto

Determines resistance R of a conductor when its length (ℓ) and cross sectional area (S), and the resistance of its component material (ρ) are known.

$$
\mathrm{R}=\rho \frac{\ell}{\mathrm{S}} \quad(\mathrm{~S}, \ell, \rho>0) \quad \text { Units: } \ell: \mathrm{m}, \mathrm{~S}: \mathrm{m}^{2}, \rho: \Omega \cdot \mathrm{m}, \mathrm{R}: \Omega
$$

No. 08 Magnetic Force
Determines the motive force (F) in a conductor with electric current (I) flowing through it and placed in a magnetic field of uniform magnetic force density (B), when the length of the conductor is ℓ and the angle formed by the conductor and magnetic field is θ.

$$
\mathrm{F}=\mathrm{IB} \ell \sin \theta \quad\left(\ell>0,0^{\circ} \leqq|\theta| \leqq 90^{\circ}\right)
$$

$$
\text { Units: } \quad \mathrm{B}: \mathrm{T}, \mathrm{I}: \mathrm{A}, \ell: \mathrm{m}, \theta:{ }^{\circ} \text { (degrees), } \mathrm{F}: \mathrm{N}
$$

No. 09 Change in Terminal Voltage of \mathbf{R} in an RC Series Circuit
Determines the terminal voltage $\left(\mathrm{V}_{\mathrm{R}}\right)$ of terminal R at time t in an RC series circuit when voltage V is applied to a circuit with a resistance of R and capacitance of C .

$$
\mathrm{V}_{\mathrm{R}}=\mathrm{V} \cdot e^{-t / \mathrm{CR}} \quad(\mathrm{C}, \mathrm{R}, t>0) \quad \text { Units: } \quad \mathrm{R}: \Omega, \mathrm{C}: \mathrm{F}, t \text { : seconds, } \mathrm{V} \text { and } \mathrm{V}_{\mathrm{R}}: \mathrm{V}
$$

No. 10 Voltage Gain
Determines the voltage gain (G) of an amplifier circuit when input voltage (E) and output voltage (E^{\prime}) are known.
$\mathrm{G}[d \mathrm{~B}]=20 \log _{10}$
$0\left(\frac{E^{\prime}}{E}\right)$
[dB]
$\left(\mathrm{E}^{\prime} / \mathrm{E}>0\right)$
Units: E and $\mathrm{E}^{\prime}: \mathrm{V}, \mathrm{G}: d \mathrm{~B}$

No. 11 Impedance in an LRC Series Circuit

Determines the impedance (Z) of an LRC series circuit of frequency f, when resistance (R), coil inductance (L), and capacitance (C) are known.

$$
\begin{array}{r}
Z=\sqrt{\mathrm{R}^{2}+\left(2 \pi f \mathrm{~L}-\frac{1}{2 \pi f \mathrm{C}}\right)^{2}}\left(=\sqrt{\mathrm{R}^{2}+\left(\omega \mathrm{L}-\frac{1}{\omega \mathrm{C}}\right)}\right) \\
(\mathrm{R}, f, \mathrm{~L}, \mathrm{C}>0) \\
\text { Units: } f: \mathrm{Hz}, \mathrm{~L}: \mathrm{H}, \mathrm{C}: \mathrm{F}, \mathrm{R} \text { and } \mathrm{Z}: \Omega
\end{array}
$$

E-59

No. 17 Doppler Effect

Determines the oscillation frequency (f) heard by an observer when both the sound source Deterner are moving when the sound source oscillation frequency (f) , acoustio velocity (v), sound source movement speed $\left(v_{1}\right)$ and observer movement speed (u) are known

$$
f=f_{1} \frac{v-u}{v-v_{1}} \quad\left(v \neq v_{1}, f_{1}>0,(v-u) /\left(v-v_{1}\right)>0\right)
$$

Units: v, v_{1} and $u: \mathrm{m} / \mathrm{s}, f_{1}$ and $f: \mathrm{Hz}$
No. 18 Equation of State of Ideal Gas
Determines the pressure (P) of a gas when the number of mols (n), absolute temperature (T), and volume (V) are known.

$$
\mathrm{P}=\frac{n \mathrm{RT}}{\mathrm{~V}} \quad(\mathrm{R}: \text { gas constant, } n, \mathrm{~T}, \mathrm{~V}>0) \quad \text { Units: } n: \mathrm{mol}, \mathrm{~T}: \mathrm{K}, \mathrm{~V}: \mathrm{m}^{3}, \mathrm{P}: \mathrm{N} / \mathrm{m}^{3}
$$

No. 19 Centrifugal Force

Determines the centrifugal force (F) for an object of mass m moving at velocity v in a circular pattern of radius r.

$$
\mathrm{F}=m \frac{v^{2}}{r} \quad(m, v, r>0) \quad \text { Units: } m: \mathrm{kg}, v: \mathrm{m} / \mathrm{s}, r: \mathrm{m}, \mathrm{~F}: \mathrm{N}
$$

No. 20 Elastic Energy

Determines the elastic energy (U) of an object when its elastic constant (K) and elongated ength (x) are known

$$
\mathrm{U}=\frac{1}{2} \mathrm{~K} x^{2} \quad(\mathrm{~K}, x>0) \quad \text { Units: } \mathrm{K}: \mathrm{N} / \mathrm{m}, x: \mathrm{m}, \mathrm{U}: \mathrm{J}
$$

No. 21 Bernoulli's Theorem

Determines the fixed value (C) of an inviscid fluid (steady flow, incompressible fluid) when the flow velocity (v), location (height) (z), specific weight (ρ), and pressure (P) are known.

$$
\mathrm{C}=\frac{1}{2} v^{2}+\frac{\mathrm{P}}{\rho}+g z \quad(g: \text { gravitational acceleration, } v, z, \rho, \mathrm{P}>0)
$$ Units: $\quad v: \mathrm{m} / \mathrm{s}, z: \mathrm{m}, \rho: \mathrm{kg} / \mathrm{m}^{3}, \mathrm{P}: \mathrm{kgf} / \mathrm{m}^{2}, \mathrm{C}: \mathrm{m}^{2} / \mathrm{s}^{2}$

No． 22 Calculations Using a Stadia（Height）
Determines the difference in elevation (h) from the transit to the leveling rod after a transit is used to read the length on the leveling rod (ℓ) between the upper and lower stadia lines， and the angle of elevation (θ) ．

$$
\begin{array}{r}
h=\frac{1}{2} \mathrm{~K} \ell \sin 2 \theta+\mathrm{C} \sin \theta \quad\left(\mathrm{~K} \text { and } \mathrm{C}: \text { stadia constants, } 0^{\circ}<\theta \leqq 90^{\circ}, \ell>0\right) \\
\quad \text { Units: } \ell: \mathrm{m}, \theta::^{\circ} \text { (degrees), } h: \mathrm{m}
\end{array}
$$

No． 23 Calculations Using a Stadia（Distance）

Determines the horizontal distance（S）from the transit to the leveling rod after a transit is used to read the length on the leveling rod（ ℓ ）between the upper and lower stadia lines， and the angle of elevation (θ) ．
$S=K \ell \cos ^{2} \theta+\mathrm{C} \cos \theta \quad\left(\mathrm{K}\right.$ and C ：stadia constants， $\left.0^{\circ}<\theta \leqq 90^{\circ}, \ell>0\right)$
Units：$\quad \ell: \mathrm{m}, \theta:{ }^{\circ}$（degrees）， $\mathrm{S}: \mathrm{m}$

Program Mode（PRGM）

You can use the PRGM Mode（\％000 6）to create and store programs for calculations you You can use the PRGM Mode（mooe－ 6 ）to create and store programs for calculations you
need to perform on a regular basis．You can include any calculation that can be performed in the COMP CMPL X，BASE SD，or REG Mode in a program

Program Mode Overview

【】Specifying a Program Run Mode

Though you create and run programs in the PRGM Mode，each program has a＂run mode＂ that it runs in．You can specify COMP，CMPLX，BASE，SD，or REG as a program＇s run mode．This means you need to think about what you want your program to do and select the appropriate run mode．

【】 Program Memory

Program memory has a total capacity of 680 bytes，which can be shared by up to four programs．Further program storage is not possible after program memory becomes full．

E－62

Creating a Program

\】 Creating a New Program

Example：To create a program that converts inches to centimeters（ 1 inch $=2.54 \mathrm{~cm}$ ）

1．Press 1000 （PRGM）to enter the PRGM Mode． | | | |
| :---: | :---: | :---: |
| 1 | 2 | 3 |

2．Press 1 （EDIT）．
EDIT Program
P－1234 670 Remaining program memory capacity
3．Press the number key that corresponds to an unused program area number．
This displays the run mode selection menu．Use © and $(\mathbb{)}$ to switch between menu screon 1 and screen 2.

$$
\begin{array}{rl}
+M O D E: C O M P ~ C M P L X \\
1 & 2
\end{array} \rightarrow \begin{array}{cc}
\text { +MODE:BASE SD REG } \\
3 & 45 \\
\text { Screen 1 }
\end{array}
$$

4．Press the number key that corresponds to the mode you want to assign as the program＇s run mode．

| －Here，select 1 （COMP）on screen 1．This selects COMP |
| :--- | :--- |
| as the run mode，and displays the program editing |
| screen． |

Important！
You cannot change the run mode of a program once it has been assigned．A run mode can
be assigned only when you are creating a new program．
5．Input the program．$\quad ? \rightarrow A: A \times 2.54$
010
－Here we will input the program shown below．

Program	$? \rightarrow \mathrm{~A}: \mathrm{A} \times 2.54$
Key Operation	

－shlif 3 （P－CMD）displays a special program command input screen．See＂Inputting Commands＂on page 65 for more information．

6．After inputting the program，press $\triangle A C$ or sHnfr Frog（EXIT）
－To run the program you just created，press 戊相 here to display the RUN Program
screen．For more information，see＂Running a Program＂below．
To return to the normal calculation screen，press wood 1 to enter the COMP Mode．

【】 Editing an Existing Program

1．Press 1000 E（PRGM） 1 （EDIT）to display the EDIT Program screen．
2．Use number keys 10 through 4 to select the program area that contains the program
you want to edit
3．Use（©）and © to move the cursor around the program，and perform the required operations to edit the contents of the program or to add new contents． －Pressing © jumps to the beginning of the program，while \odot jumps to the end 4．After you finish editing the program，press $\triangle A C$ or（shlif roog（EXIT）

－Running a Program

You can run a program in the PRGM Mode or from another mode．
K Running a Program from Outside the PRGM Mode
1．Press roog．

2．Use number keys 1 through 4 to select a program area and execute its program．
K \mathbf{Z} Running a Program in the PRGM Mode
1．Press 1000 E （PRGM）to display the PRGM Mode initial screen．
2．Press $2($ RUN ）
－This will display the RUN Program screen．

Pram ${ }_{\text {¢ }}$	
RUN Program	
P－1234 670	maining program memory capacity

3．Use number keys 10 through 4 to select the program area that contains the program you want to run
－This will execute the program in the program area you select．

C What to do if an error message appears

Press（4）or ©．This will display the editing screen for the program，with the cursor located Press or ．This will display the editing screen for the program，with the act
at the loction where the error was generated so you can correct the problem．

－Deleting a Program

You can delete an existing program by specifying its program area number．
K Deleting the Program in a Specific Program Area
1．Press 1000 6（PRGM）to display the PRGM Mode initial screen．

2．Press 3 （DEL）．

3．Use number keys
3．Use number keys 10 through $[4$ to select the program area whose program you want to delete．
－The symbol next to the number of the program area that contained the program you just deleted will turn off， increase．

Inputting Commands

K Inputting Special Program Commands
1．While the program editing screen is on the display，press shrff 3 （P－CMD） －This displays page 1 of the command menu．

2．Use（©）and © to scroll through the pages and display the one that contains the command you want
3．Use number keys 1 through 4 to select and input the command you want．

Note

To input a separator symbol（：），press 国配，
V Functions that Can be Input as Program Commands
You can input the settings and other operations that you perform during normal calculations as program commands．For more information，see the＂Command Reference＂below．

Command Reference

This section provides details on each of the commands that you can use in programs． Commands that have P－CMD in the title can be input on the screen that appears when you press（shlif（3）（P－CMD）or Frog．

\ Basic Operation Commands P－CMD

？（Input Prompt）

Syntax	$? \rightarrow$ \｛variable\} Function
	Displays the input prompt＂\｛variable\}?" and assigns the input value to a variable．
Example	$? \rightarrow \mathrm{~A}$

\rightarrow（Variable Assignment）	
Syntax	\｛expression ；？\} \rightarrow \｛variable\}
Function	Assigns the value obtained by the element on the left to the variable on the right．
Example	$\mathrm{A}+5 \rightarrow \mathrm{~A}$
：（Separator Code）	
Syntax	\｛statement\} : \{statement\} : ... : \{statement\}
Function	Separates statements．Does not stop program execution．
Example	$? \rightarrow \mathrm{~A}: \mathrm{A}^{2}: \mathrm{Ans}^{2}$
\triangle（Output Command）	
Syntax	\｛statement\} $\boldsymbol{\triangle}$ \｛statement\}
Function	Pauses program execution and displays the result of the current execution． The Disp symbol is turned on while program execution is paused by this command．
Example	$? \rightarrow \mathrm{~A}: \mathrm{A}^{2} \triangle \mathrm{Ans}^{2}$
{	
Unconditional Jump Command P－CMD}	
Goto～Lbl	
Syntax	Goto $n: \ldots .$. ：Lbl n or Lbl $n: \ldots .$. ：Goto $n(n=$ integer from 0 to 9 ）
Function	Execution of Goto n jumps to corresponding Lbl n ．
Example	$? \rightarrow \mathrm{~A}:$ Lbl $1: ? \rightarrow \mathrm{~B}: \mathrm{A} \times \mathrm{B} \div 2 \boldsymbol{4}$ Goto 1
Important！ A Syntax ERROR occurs if there is no corresponding Lbl n in the same program where Goto n is located．	
© Conditional Jump Commands and Conditional Expressions P－CMD	
\Rightarrow	
Syntax	（1）$\{$ expression $\}$ \｛relational operator\} $\{$ expression $\} \Rightarrow$ \｛statement1\}: \｛statement2\}:.... （2）$\{$ expression $\} \Rightarrow\{$ statement1\} : \{statement 2$\}$ ：．．．．．
Function	Conditional branching command used in combination with relational operators（ $=, \neq,>, \geqq,<, \leqq$ ）． Syntax（1）：\｛statement1\} is executed if the condition to the left of the \Rightarrow command is true，and then \｛statement2\} and everything after it is executed in sequence．\｛statement1\} is skipped if the condition to the left of the \Rightarrow command is false，and then \｛statement2\} and everything after it is executed. Syntax（2）：A non－zero evaluation result of the condition to the left of the \Rightarrow command is interpreted as＂true＂，so \｛statement1\} is executed, followed by \｛statement2\} and everything after it in succession. A zero evaluation result of the condition to the left of the \Rightarrow command is interpreted as＂false＂，so \｛statement1\} is skipped, and \{statement2\} and everything after it is executed. E－66

Example \quad For $1 \rightarrow A$ To $10: A^{2} \rightarrow B: B \quad \operatorname{Next}$
For～To～Step～Next
Syntax \quad For $\{$ expression（starting value）$\} \rightarrow\{$ variable（control variable）$\}$ To $\{$ expression （ending value）$\}$ Step $\{$ expression（step）$\}$ ：\｛statement $\}$ ：．．．\｛statement $\}$ Next：．
Function Execution of the statements from For to Next repeats as the control variable is incremented by the step amount with each execution，starting from the starting value．Except for that this command is the same as For \sim To $\sim N e x$
Example \quad For $1 \rightarrow A$ To 10 Step $0.5: A^{2} \rightarrow B: B \quad$ Next

【】Control Structure Commands／While Statement P－CMD

While Statement Precaution
You cannot include a For statement inside of a While statement．

While \sim WhileEnd	
Syntax	While \｛conditional expression\} : \{statement\} : ... \{statement\}
Function	The statements from While to WhileEnd are repeated while the conditional expression following While is true（non－zero）．When the conditional expression following While becomes false（0），the statement following WhileEnd is executed．
Example	$? \rightarrow \mathrm{~A}:$ While $\mathrm{A}<10: \mathrm{A}^{2} \boldsymbol{\triangle} \mathrm{~A}+1 \rightarrow \mathrm{~A}:$ WhileEnd ： $\mathrm{A} \div 2$
Note If the condition of the While statement is false the first time this command is executed， execution jumps directly to the statement following WhileEnd without executing the statements from While to WhileEnd even once．	
【】 Program Control Commands P－CMD	
Break	
Syntax	．．：\｛Then ；Else ；\Rightarrow \} Break : ..
Function	This command forces a break in a For or While loop，and jumps to the next command．Normally，this command is used inside of a Then statement in order to apply a Break condition．
xam	$\rightarrow \mathrm{A}$ ：While A＞ 0 ：If A＞ 2 ：Then Break ：IfEnd ：WhileEnd ：A $\boldsymbol{\triangle}$

Example Lbl 1：？$\rightarrow \mathrm{A}: \mathrm{A} \geqq 0 \Rightarrow \sqrt{ }(\mathrm{~A}) \boldsymbol{\Delta}$ Goto 1
$=, \neq,>, \geqq,<, \leqq$（Relational Operators）
Syntax \｛expression\} \{relational operator\} \{expression
Function These commands evaluate the expressions on either side，and return a value of true（1）or false（ 0 ）．These commands are used in combination with the branching command \Rightarrow ，and when structuring the \｛conditional expression\} of statements and While statements
Example See the entries for \Rightarrow（page 66），If statement（page 67），and While statement （page 68）．
Note
These commands evaluate the expressions on either side，and return 1 if true and 0 if false， and store the result in Ans
【．Control Structure Commands／If Statement P－CMD
The If statement is used to control program execution branching according to whether the expression following If（which is the branching condition）is true or false．
If Statement Precautions
An If must always be accompanied by a Then．Using an If without a corresponding Then will result in a Syntax ERROR
－An expression，Goto command，or Break command can be used for the \｛expression＊
You

If \sim Then（ \sim Else）\sim IfEnd
Syntax If \｛conditional expression\} : Then \{expression*\} : Else \{expression*\} : IfEnd
\｛statement $\}$ ：．．．
statements following IfEnd are executed when the conditional statement following If is true．The statements following Else and then the statements ollowing IfEnd are executed when the conditional statement following If is false．
－Else \｛expression\} may be omitted.
Always include the IfEnd：\｛statement\}. Omitting it will not cause an error, but certain program contents can cause unexpected execution results by everything after the If statement．
$\begin{array}{ll}\text { Example } 1 & ? \rightarrow \mathrm{~A}: \text { If } \mathrm{A}<10: \text { Then } 10 \mathrm{~A} \boldsymbol{A} \text { Else } 9 \mathrm{~A} \boldsymbol{A} \boldsymbol{\Delta} \text { If End ：Ans } \times 1.05 \\ \text { Example } 2 & ? \rightarrow \mathrm{~A}: \text { If } \mathrm{A}>0: \text { Then } \mathrm{A} \times 10 \rightarrow \mathrm{~A}: \text { IfEnd ：Ans } \times 1.05\end{array}$
\} Control Structure Commands／For Statement P－CMD
The For statement repeats execution of the statements between For and Next as long as the value assigned to the control variable is within the specified range．
For Statement Precautions
－A For statement must always be accompanied by a Next statement．Using a For without a corresponding Next will result in a Syntax ERROR
You cannot include a While statement inside of a For statement．
E－67

【 Setup Commands

hese commands function the same way as the calculator＇s various setup settings．For more information，see＂Calculator Setup＂on page 8.
Important
With some setup commands，the settings you configure remain in effect even after you finish running the program．
Angle Unit Commands

Deg，Rad，Gra		（COMP，CMPLX，SD，REG）
Syntax	．．．Deg ：．．	
	．．：Rad：．．	
	．．：Gra：．．	
Operation	Sshri） 1000 （SETUP） 1 （Deg）	
	（shlri miobe（SETUP）${ }^{2}$（Rad）	
	［sHIT M00E（SETUP） 3 （Gra）	
Function	These commands specify the angle unit setting．	
Display Format Command		
Fix		（COMP，CMPLX，SD，REG）
Syntax	．．．：Fix $\{n\}$ ：．．．$n=$ an integer from 0 to 9 ）	
Operation	（SHHFI 1000（SETUP）（1） 1 （Fix） 0 to 9	
Function	This command fixes the number of decimal plac calculation results．	ees（from 0 to 9 ）for output of

Sci（COMP CMPLX，SD，REG）

Function This command fixes the number of significant digits（from 1 to 10）for output f calculation results．
 digits．
 E－69

K Clear Commands

CIrMemory	（COMP，CMPLX，BASE）
Syntax	．．：ClirMemory ：．．
Operation	
Function	This command clears all variables（A，B，C，D，X，Y，M）to zero．
Note To clear a specific variable，use $0 \rightarrow\{$ variable $\}$ ．	
ClrStat（SD，REG）	
Syntax	．．：ClrStat ：．．
Operation	［shlfir 9 （CLR） 1 （Stat）
Function	This command clears all statistical sample data currently in memory．
K Independent Memory Commands	
M＋，M－	（COMP，CMPLX，BASE）
Syntax ．．：$\{$ expression\} M + : .. / .. : \{expression\} M- : ..	
Operation	
Function	$\mathrm{M}+$ adds the value of the expression to independent memory，while $\mathrm{M}-$ subtracts it．
V Rounding（Rnd）Command	
Rnd（	（COMP，CMPLX，SD，REG）
Syntax Operation Function	．．．$\{$ expression\} : Rnd(Ans : ..
	This command rounds a calculation result in accordance with the number of digits specified by the display format．

K Number Base Commands
Dec，Hex，Bin，Oct（BASE）

Syntax ．．：Dec：．．／．．：Hex：．．／．．：Bin ：．．／．．：Oct
Operation $\quad \cdots x^{2}(\mathrm{DEC}) / \boldsymbol{\wedge}(\mathrm{HEX}) / / \log (\mathrm{BIN}) / /$ In (OCT)
Function These commands specify the number base for base－n calculations．

E Statistical Data Input Command

DT	（SD，REG）
Syntax	．．：\｛expression（x－value） ；\｛expression（Freq－value）$\}$ DT ：．．
	．．：$\{$ expression（ x－value）\}, \{expression (y－value）\} ; \{expression (Freq-value) \}
	DT ：．．．．．．．．．．．．．．．．．．．．REG Mode，FreqOn
	\｛expression（x－value）\}, \{expression (y-value)\} DT :REG Mode, FreqOff

Sequence	Operation Type	Description
7	Multiplication，Division Omitted Multiplication Sign	\times, \div Multiplication sign can be omitted immediately before π, e, variables，scientific constants $(2 \pi, 5 \mathrm{~A}$, $\pi \mathrm{A}, 3 \mathrm{mp}, 2 i$, etc．），and parenthetical functions $(2 \sqrt{ }(3)$, Asin（30），etc．）
8	Addition，Subtraction	,+-
9	Relational Operators	$=, \neq,>,<, \geq, \leqq$
10	Logical Product	and
11	Logical Sum，Exclusive Logical Sum，Exclusive Negative Logical Sum	or，xor，xnor

Note
－If a calculation contains a negative value，you may need to enclose the negative value in parentheses．If you want to square the value -2 ，for example，you need to input：$(-2)^{2}$ ．This is because x^{2} is a function preceded by a value（Priority 2 ，above），whose priority is greater than the
negative sign，which is a prefix symbol（Priority 4） negative sign，which is a prefix symbol（Priority 4）
国
$-2^{2}=-4$
$(-2)^{2}=4$
0 和国 $\quad(-2)^{2}=4$
Multiplication and division，and multiplication where the sign is omitted are the same priority （Priority 7），so these operations are performed from left to right when both types are mixed in the
use of parentheses can result in different calculation results．

Stack Limitations
This calculator uses memory areas called＂stacks＂for temporary storage of lower calculation priority sequence values，commands，and functions．The＂numeric stack＂has 10 levels and the＂command stack＂has 24 levels as shown in the illustration below．

A Stack ERROR occurs when the calculation you are performing causes the capacity of a stack to be exceeded．

mportant

To input a semicolon（；）in the above syntax，press shrify $(;)$ ．To input a comma（，），press \square ．
Operation \quad Mt（Inputs DT．）
Function Use this command to input one set of sample data．The DT command functions the same way as the \prod^{W+t} key（DT key）in the SD Mode and REG Mode．
V Functions Not Supported in Programs
The following functions are not supported inside of functions．
－Calculation result conversion functions（ENG \rightarrow ，ENG \leftarrow ，Sexagesimal \leftrightarrow Decima
Conversion，Fraction \leftrightarrow Decimal Conversion）
－Display switching（SHHFF）Exe $(R e \Leftrightarrow I m)$ ）while a complex number calculation result is
displayed
（（shrfir 9 （CLR） 3 （All）四）
－Setup information clear（（SHHFF（CLR）2（Setup）比）

Appendix

－Calculation Priority Sequence
The calculator performs calculations you input in accordance with the priority sequence show below．
Basically，calculations are performed from left to right

Sequence	Operation Type	Description
1	Parenthetical Functions	Pol（，Rec（ $\sin \left(, \cos \left(, \tan \left(, \sin ^{-1}\right), \cos ^{-1}\left(, \tan ^{-1}(, \sinh (, \cosh (\right.\right.\right.$, $\tanh \left(, \sinh ^{-1}\left(, \cosh ^{-1}\left(, \tanh ^{-1}(\right.\right.\right.$ $\log \left(, \ln \left(, e^{\wedge}\left(, 10^{\wedge}(, \sqrt{ }(, \sqrt[3]{ }(\right.\right.\right.$ arg（，Abs（，Conjg（ Not（，Neg（，Rnd（
2	Functions Preceded by Values Power，Power Root Percent	$\begin{aligned} & \begin{array}{l} x^{2}, x^{3}, x^{-1}, x!, \circ \cdots, \circ, r, 9 \\ \wedge(, x \sqrt{ } / \\ \% \end{array} \\ & \% \end{aligned}$
3	Fractions	$a^{\text {b／}}$ c
4	Prefix Symbols	（－）（minus sign） d，h，b，o（number base symbol）
5	Statistical Estimated Value Calculations	$\hat{x}, \hat{y}, \hat{x}_{1}, \hat{x}_{2}$
6	Permutation，Combination Complex Number Symbol	$\begin{aligned} & n \mathrm{Pr} r, n \mathrm{Cr} \\ & \angle \end{aligned}$

E－71

Note
When inputting a value in the CMPLX Mode，each value takes up two stack levels：one for the real part and one for the imaginary part．This means that the numeric stack has only five levels in the CMPLX Mode．
－Calculation Ranges，Number of Digits，and Precision
The following table shows the general calculation range（value input and output range），number of digits used for internal calculations，and calculation precision．

Calculation Range	$\pm 1 \times 10^{-99}$ to $\pm 9.999999999 \times 10^{99}$ or 0
Internal Calculation	15 digits
Precision	In general，± 1 at the 10 th digit for a single calculation．Error in the case of a calculation result in exponential format is ± 1 at the least significant digits of the mantissa．Errors are cumulative in the case of consecutive calculations．

【 Function Calculation Input Ranges and Precision

Functions	Input Range	
$\sin x$	DEG	$0 \leqq\|x\|<9 \times 10^{9}$
	RAD	$0 \leqq\|x\|<157079632.7$
	GRA	$0 \leqq\|x\|<1 \times 10^{10}$
$\cos x$	DEG	$0 \leqq\|x\|<9 \times 10^{9}$
	RAD	$0 \leqq\|x\|<157079632.7$
	GRA	$0 \leqq\|x\|<1 \times 10^{10}$
$\tan x$	DEG	Same as $\sin x$ ，except when $\|x\|=(2 n-1) \times 90$ ．
	RAD	Same as $\sin x$ ，except when $\|x\|=(2 n-1) \times \pi / 2$ ．
	GRA	Same as $\sin x$ ，except when $\|x\|=(2 n-1) \times 100$ ．
$\sin ^{-1} x$	$0 \leqq\|x\| \leqq 1$	
$\cos ^{-1} x$		
$\tan ^{-1} x$	$0 \leqq\|x\| \leqq 9.999999999 \times 10^{99}$	
$\sinh x$	$0 \leqq\|x\| \leqq 230.2585092$	
$\cosh x$		
$\sinh ^{-1} x$	$0 \leqq\|x\| \leqq 4.999999999 \times 10^{99}$	
$\cosh ^{-1} x$	$1 \leqq x \leqq 4.999999999 \times 10^{99}$	
$\tanh x$	$0 \leqq\|x\| \leqq 9.999999999 \times 10^{99}$	
$\tanh ^{-1} x$	$0 \leqq\|x\| \leqq 9.999999999 \times 10^{-1}$	
$\log x / \ln x$	$0<x \leqq 9.999999999 \times 10^{09}$	
10^{x}	$-9.999999999 \times 10^{99} \leqq x \leqq 99.99999999$	

Functions	Input Range
e^{x}	$-9.999999999 \times 10^{99} \leqq x \leqq 230.2585092$
\sqrt{x}	$0 \leqq x<1 \times 10^{100}$
x^{2}	$\|x\|<1 \times 10^{50}$
1／x	$\|x\|<1 \times 10^{100} ; x \neq 0$
$\sqrt[3]{x}$	$\|x\|<1 \times 10^{100}$
x ！	$0 \leqq x \leqq 69$（ x is an integer）
$n \mathrm{Pr}$	$\begin{aligned} & 0 \leqq n<1 \times 10^{10}, 0 \leqq r \leqq n(n, r \text { are integers }) \\ & 1 \leqq\{n!/(n-r)!\}<1 \times 10^{100} \end{aligned}$
$n \mathrm{Cr}$	$\begin{aligned} & 0 \leqq n<1 \times 10^{10}, 0 \leqq r \leqq n(n, r \text { are integers }) \\ & 1 \leqq n!r!<1 \times 10^{100} \text { or } 1 \leqq n!/(n-r)!<1 \times 10^{100} \end{aligned}$
$\operatorname{Pol}(x, y)$	$\begin{aligned} & \|x\|,\|y\| \leqq 9.999999999 \times 10^{99} \\ & \sqrt{x^{2}+y^{2}} \leqq 9.999999999 \times 10^{99} \end{aligned}$
$\operatorname{Rec}(r, \theta)$	$\begin{aligned} & 0 \leqq r \leqq 9.999999999 \times 10^{09} \\ & \theta: \text { Same as } \sin x \end{aligned}$
○＂	$\begin{aligned} & \|a\|, b, c<1 \times 10^{100} \\ & 0 \leqq b, c \end{aligned}$
\leftarrow	$\|x\|<1 \times 10^{100}$ Decimal \leftrightarrow Sexagesimal Conversions $0^{\circ} 0^{\prime} 0^{\prime \prime} \leqq\|x\| \leqq 9999999^{\circ} 59^{\prime} 59^{\prime \prime}$
$\wedge\left(x^{y}\right)$	$\begin{aligned} & x>0:-1 \times 10^{100}<y \log x<100 \\ & x=0: y>0 \\ & x<0: y=n, \frac{m}{2 n+1} \quad(m, n \text { are integers }) \\ & \text { However: }-1 \times 10^{100}<y \log \|x\|<100 \end{aligned}$
$x \sqrt{y}$	$\begin{aligned} & y>0: x \neq 0,-1 \times 10^{100}<1 / x \log y<100 \\ & y=0: x>0 \\ & y<0: x=2 n+1, \frac{2 n+1}{m} \quad(m \neq 0 ; m, n \text { are integers }) \\ & \text { However: }-1 \times 10^{100}<1 / x \log \|y\|<100 \end{aligned}$
$a b / c$	Total of integer，numerator，and denominator must be 10 digits or less（including separtor symbols）．

－$\wedge^{\wedge}\left(x^{y}\right), x_{\sqrt{y}}^{y}, \sqrt[3]{ } \sqrt{ }, x!, n \mathrm{Pr}, n \mathrm{Cr}$ type functions require consecutive internal calculation，which can result in accumulation of errors that occur within each individual calculation．
Errors are cumulative and tend to be large in the vicinity of a function＇s singular point and
inflection point． inflection point．

■ Error Messages
An error message will appear on the screen if you perform a calculation that causes a calculator＇s limit to be exceeded，or if you try to perform some operation that is not allowed．

Sample Error Message
Data Full

Cause	You are attempting to store sample data in the SD Mode or REG Mode when the allowable number of data samples are already stored in memory．
Action	Keep the number of data samples within the allowable limit．For more information，see＂Maximum Number of Input Data Items＂on page 38.
Go ERROR	A program（that you created in the PRGM Mode）has a＂Goto n＂command without a corresponding＂Lbl n＂label．
Action	Either add a＂Lbl n＂for the＂Goto n＂command，or delete the applicable＂Goto n＂command．

■ Before assuming malfunction of the calculator．．

Pertorm the following steps whenever an error occurs during a calculation or when calculation results are not what you expected．If one step does not correct the problem，move on to the nex step．Note that you should make copies of important copies of important data before performing these steps．
（1）Check the calculation expression to make sure it does not include any errors．
（2）Make sure that you are using the correct mode for the type of calculation you are trying to perform．
（3）If the above steps do not restore normal operation，press the © $\begin{aligned} & \text { key．The calculator will perform }\end{aligned}$ a self－check of its status as it starts up．If the calculator discovers a problem，it will return its calculation mode and setup to their initial defaults，and clear all data currently in memory．
（4）If step（3）does not restore normal operation，initialize all modes and settings by pressing （댚F（CLR）（Setup）国

Power Requirements

Your calculator has a TWO WAY POWER system that combines a solar cell with a button battery（LR44）．Unlike solar cell－only calculators that operate only when light is present TWO WAY POWER system calculator keeps on operating even in the dark．（Of course，you will need enough light to be able to read the display contents．）

C Replacing the Battery

Dim display characters，especially when using the calculator where lighting is dim，or slow display response when you turn on the calculator indicates that button battery power is low． Replace the battery whenever you notice these symptoms．You should also regularly replace the battery at least once every three years，even if the calculator is operating normally． Important！
Removing the button battery from the calculator causes independent memory contents and values assigned to variables to be cleared．

【 Recovering from an Error Message
You can recover from an error message by performing the key operations described below， regardless of the error type．
－Press © or © to display the editing screen for the calculation expression you input immediately before the error occurred，with the cursor positioned at the location that caused the error．For
more information，see＂Finding the Location of an Error＂on page 13.
Pressing $\triangle C$ will clear the calculation expression you input immediately before the error occurred． Note that a calculation expression that causes an error will not be included in calculation history．

I Error Message Reference

This section lists all of the error messages that the calculator displays，as well as their causes and what you need to do to avoid them．
Math ERROR

Cause	－An intermediate or the final result of the calculation falls outside of the allowable calculation range． －An input value is outside the allowable input range． －You are trying to perform an illegal mathematical operation（such as division by zero）．
Action	－Check your input values and reduce the number of digits，if required． －When using independent memory or a variable as the argument of a function，make sure that the memory or variable value is within the allowable range for the function．

For information about the allowable value input range，see＂Calculation Ranges，Number of Digits， and Precision＂on page 73
Stack ERROR

Cause	The calculation has causes the capacity of the numeric stack or the command stack to be exceeded．
Action	－Simplify the calculation expression so it does not exceed the capacity of the stacks． －Try splitting the calculation into two or more parts．
For information about the capacities of the stacks，see＂Stack Limitations＂on page 72.	
Syntax ERROR	
Cause The calculation has a format problem． Action Check the syntax and make the required corrections． Arg ERROR Cause The calculation has a problem with how an argument being used． Action Check how arguments are being used and make the required corrections．	

1．Press shfir $\triangle A C$（OFF）to turn off the calculator
To ensure that you do not accidentally turn on the
calculator while replacing the battery slide the hard cas into the front of the calculato
On the back of the calculator，remove the screw and the battery cover．
．Remove the old battery．
4．After wiping a new battery with a dry cloth，load it into the battery compartment with its plus \oplus side facing upwards（so you can see it）．
5．Replace the battery cover and secure it in place with the screw．
 Be sure to perform this step！Do not skip it！

Z】Auto Power Off

Your calculator will turn off automatically if you do not perform any operation for about 10 minutes．If this happens，press the low key to turn the calculator back on．

Specifications

Power Requirements
Solar Cell：Built into front of calculator（fixed） Button Battery：G13 type（LR44）$\times 1$
Approximate Battery Life：
3 years（based on 1 hour of operation per day）
Operating Temperature： $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $104^{\circ} \mathrm{F}$ ）
Dimensions： $12.2(\mathrm{H}) \times 80(\mathrm{~W}) \times 161$（D） mm
$12^{\prime \prime}(\mathrm{H}) \times 3^{1 / 88^{\prime \prime}}(\mathrm{W}) \times 6^{5} / 16^{\prime \prime}(\mathrm{D})$
Approximate Weight： $105 \mathrm{~g}(3.7 \mathrm{oz})$ including the battery
Bundled Accessories：Hard Case

